我在哪儿?基于ndt的MCL先验

T. Kucner, Martin Magnusson, A. Lilienthal
{"title":"我在哪儿?基于ndt的MCL先验","authors":"T. Kucner, Martin Magnusson, A. Lilienthal","doi":"10.1109/ECMR.2015.7324175","DOIUrl":null,"url":null,"abstract":"One of the key requirements of autonomous mobile robots is a robust and accurate localisation system. Recent advances in the development of Monte Carlo Localisation (MCL) algorithms, especially the Normal Distribution Transform Monte Carlo Localisation (NDT-MCL), provides memory-efficient reliable localisation with industry-grade precision. We propose an approach for building an informed prior for NDT-MCL (in fact for any MCL algorithm) using an initial observation of the environment and its map. Leveraging on the NDT map representation, we build a set of poses using partial observations. After that we construct a Gaussian Mixture Model (GMM) over it. Next we obtain scores for each distribution in GMM. In this way we obtain in an efficient way a prior for NDT-MCL. Our approach provides a more focused then uniform initial distribution, concentrated in states where the robot is more likely to be, by building a Gaussian mixture model over potential poses. We present evaluations and quantitative results using real-world data from an indoor environment. Our experiments show that, compared to a uniform prior, the proposed method significantly increases the number of successful initialisations of NDT-MCL and reduces the time until convergence, at a negligible initial cost for computing the prior.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Where am I? An NDT-based prior for MCL\",\"authors\":\"T. Kucner, Martin Magnusson, A. Lilienthal\",\"doi\":\"10.1109/ECMR.2015.7324175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the key requirements of autonomous mobile robots is a robust and accurate localisation system. Recent advances in the development of Monte Carlo Localisation (MCL) algorithms, especially the Normal Distribution Transform Monte Carlo Localisation (NDT-MCL), provides memory-efficient reliable localisation with industry-grade precision. We propose an approach for building an informed prior for NDT-MCL (in fact for any MCL algorithm) using an initial observation of the environment and its map. Leveraging on the NDT map representation, we build a set of poses using partial observations. After that we construct a Gaussian Mixture Model (GMM) over it. Next we obtain scores for each distribution in GMM. In this way we obtain in an efficient way a prior for NDT-MCL. Our approach provides a more focused then uniform initial distribution, concentrated in states where the robot is more likely to be, by building a Gaussian mixture model over potential poses. We present evaluations and quantitative results using real-world data from an indoor environment. Our experiments show that, compared to a uniform prior, the proposed method significantly increases the number of successful initialisations of NDT-MCL and reduces the time until convergence, at a negligible initial cost for computing the prior.\",\"PeriodicalId\":142754,\"journal\":{\"name\":\"2015 European Conference on Mobile Robots (ECMR)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2015.7324175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

自主移动机器人的关键要求之一是鲁棒和精确的定位系统。蒙特卡罗定位(MCL)算法的最新进展,特别是正态分布变换蒙特卡罗定位(NDT-MCL),提供了具有工业级精度的内存高效可靠的定位。我们提出了一种方法,利用对环境及其地图的初始观察,为NDT-MCL(实际上适用于任何MCL算法)构建知情先验。利用NDT地图表示,我们使用部分观测建立了一组姿势。在此基础上构造高斯混合模型(GMM)。接下来,我们在GMM中获得每个分布的分数。通过这种方法,我们可以有效地得到NDT-MCL的先验。我们的方法通过在潜在姿势上建立高斯混合模型,提供了一个更集中的均匀初始分布,集中在机器人更有可能出现的状态。我们使用来自室内环境的真实世界数据提出评估和定量结果。我们的实验表明,与均匀先验相比,所提出的方法显着增加了NDT-MCL的成功初始化次数,并减少了收敛时间,而计算先验的初始成本可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where am I? An NDT-based prior for MCL
One of the key requirements of autonomous mobile robots is a robust and accurate localisation system. Recent advances in the development of Monte Carlo Localisation (MCL) algorithms, especially the Normal Distribution Transform Monte Carlo Localisation (NDT-MCL), provides memory-efficient reliable localisation with industry-grade precision. We propose an approach for building an informed prior for NDT-MCL (in fact for any MCL algorithm) using an initial observation of the environment and its map. Leveraging on the NDT map representation, we build a set of poses using partial observations. After that we construct a Gaussian Mixture Model (GMM) over it. Next we obtain scores for each distribution in GMM. In this way we obtain in an efficient way a prior for NDT-MCL. Our approach provides a more focused then uniform initial distribution, concentrated in states where the robot is more likely to be, by building a Gaussian mixture model over potential poses. We present evaluations and quantitative results using real-world data from an indoor environment. Our experiments show that, compared to a uniform prior, the proposed method significantly increases the number of successful initialisations of NDT-MCL and reduces the time until convergence, at a negligible initial cost for computing the prior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信