基于趋势预测和时间序列分类的股票交易算法

Matheus Rosisca Padovani, João Roberto Bertini Junior
{"title":"基于趋势预测和时间序列分类的股票交易算法","authors":"Matheus Rosisca Padovani, João Roberto Bertini Junior","doi":"10.5753/eniac.2021.18272","DOIUrl":null,"url":null,"abstract":"Algorithm trading relies on the automatic identification of buying and selling points of a given asset to maximize profit. In this paper, we propose the Trend Classification Trading Algorithm (TCTA) which is based on time series classification and trend forecasting to perform trade. TCTA first employs the K-means to cluster 5-days closing price segments and label them according to its trend. A deep learning classification model is then trained with these label sequences to estimate the next trend. Trading points are given by the alternation on trend estimates. Results considering 20 shares from Ibovespa show TCTA present higher profit than buy-and-hold and trading schemes based on Moving Average Converge Divergence (MACD) or Bollinger bands.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stock trading algorithm based on trend forecasting and time series classification\",\"authors\":\"Matheus Rosisca Padovani, João Roberto Bertini Junior\",\"doi\":\"10.5753/eniac.2021.18272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithm trading relies on the automatic identification of buying and selling points of a given asset to maximize profit. In this paper, we propose the Trend Classification Trading Algorithm (TCTA) which is based on time series classification and trend forecasting to perform trade. TCTA first employs the K-means to cluster 5-days closing price segments and label them according to its trend. A deep learning classification model is then trained with these label sequences to estimate the next trend. Trading points are given by the alternation on trend estimates. Results considering 20 shares from Ibovespa show TCTA present higher profit than buy-and-hold and trading schemes based on Moving Average Converge Divergence (MACD) or Bollinger bands.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

算法交易依赖于对给定资产的买入和卖出点的自动识别,以实现利润最大化。本文提出了基于时间序列分类和趋势预测进行交易的趋势分类交易算法(TCTA)。TCTA首先采用k均值对5天收盘价分段进行聚类,并根据其趋势对其进行标记。然后用这些标签序列训练一个深度学习分类模型来估计下一个趋势。交易点是由趋势估计的变化给出的。考虑到来自Ibovespa的20只股票的结果显示,TCTA比买入并持有和基于移动平均趋同背离(MACD)或布林带的交易方案的利润更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stock trading algorithm based on trend forecasting and time series classification
Algorithm trading relies on the automatic identification of buying and selling points of a given asset to maximize profit. In this paper, we propose the Trend Classification Trading Algorithm (TCTA) which is based on time series classification and trend forecasting to perform trade. TCTA first employs the K-means to cluster 5-days closing price segments and label them according to its trend. A deep learning classification model is then trained with these label sequences to estimate the next trend. Trading points are given by the alternation on trend estimates. Results considering 20 shares from Ibovespa show TCTA present higher profit than buy-and-hold and trading schemes based on Moving Average Converge Divergence (MACD) or Bollinger bands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信