基于CRF和具体规则的通关数据实体提取

Yonghua Xu, Yi Guo, Zhihong Wang, Wei Sun
{"title":"基于CRF和具体规则的通关数据实体提取","authors":"Yonghua Xu, Yi Guo, Zhihong Wang, Wei Sun","doi":"10.1109/ICNISC.2017.00038","DOIUrl":null,"url":null,"abstract":"For the problem of entity extraction on dirty data in customs import and export domain, this paper proposes a data cleaning method based on specific rules and machine learning for commodity named entity extraction. First, KNN (k-Nearest Neighbor) classification algorithm is used to solve mismatches of attributes and their values of fields in domain data tuple. second, commodity named entities and sub attributes of fields are extracted by specific rules and CRF (conditional random field algorithm) model, proposed method can extract correct sub-attributes of each entity. Experiment results proved the advantages of proposed method in comparison with other methods in terms of precision and recall.","PeriodicalId":429511,"journal":{"name":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entity Extraction of Customs Clearance Data Based on CRF and Specific Rules\",\"authors\":\"Yonghua Xu, Yi Guo, Zhihong Wang, Wei Sun\",\"doi\":\"10.1109/ICNISC.2017.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the problem of entity extraction on dirty data in customs import and export domain, this paper proposes a data cleaning method based on specific rules and machine learning for commodity named entity extraction. First, KNN (k-Nearest Neighbor) classification algorithm is used to solve mismatches of attributes and their values of fields in domain data tuple. second, commodity named entities and sub attributes of fields are extracted by specific rules and CRF (conditional random field algorithm) model, proposed method can extract correct sub-attributes of each entity. Experiment results proved the advantages of proposed method in comparison with other methods in terms of precision and recall.\",\"PeriodicalId\":429511,\"journal\":{\"name\":\"2017 International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC.2017.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC.2017.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对海关进出口领域中脏数据的实体抽取问题,本文提出了一种基于特定规则和机器学习的商品命名实体抽取数据清洗方法。首先,采用KNN (k-最近邻)分类算法解决域数据元组中字段属性及其值的不匹配问题;其次,通过特定规则和条件随机场算法(CRF)模型提取商品命名实体和字段的子属性,提出的方法可以正确提取每个实体的子属性。实验结果表明,该方法在查准率和查全率方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entity Extraction of Customs Clearance Data Based on CRF and Specific Rules
For the problem of entity extraction on dirty data in customs import and export domain, this paper proposes a data cleaning method based on specific rules and machine learning for commodity named entity extraction. First, KNN (k-Nearest Neighbor) classification algorithm is used to solve mismatches of attributes and their values of fields in domain data tuple. second, commodity named entities and sub attributes of fields are extracted by specific rules and CRF (conditional random field algorithm) model, proposed method can extract correct sub-attributes of each entity. Experiment results proved the advantages of proposed method in comparison with other methods in terms of precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信