{"title":"基于非对称FinFET结构的低功耗和鲁棒SRAM单元","authors":"B. Ebrahimi, R. Asadpour, A. Afzali-Kusha","doi":"10.1109/ACQED.2012.6320473","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the characteristics of low-power and robust SRAM cells based on asymmetric FinFET structures in a 32 nm technology. They are based on asymmetric source and drain structures and include Asymmetric Drain Spacer Extension (ADSE) and Asymmetric Doped Drain (ADD) FinFETs. The study includes two recently introduced 6-T SRAM cells based on these structures. In addition, we propose four transistor driverless (4-TDL) and loadless (4-TLL) SRAM cells based on these asymmetric structures. In the investigation, which compares the structures, the effect of different channel orientations is also considered. The results indicate that for 6-T, 4-TDL, and 4-TLL with different channel orientations asymmetric structures have higher read stabilities than the symmetric ones. In addition, the channel orientation (100) presents a higher read stability for 4-TLL while the channel orientation (110) gives rise to a better read stability for 6-T and 4-TDL. Asymmetric structures, however, have lower read currents where the ADSE structure leads to the least one. In terms of write operation, the asymmetric structures present better stability where 4-T cells outperform the 6-T cell. Finally, the results on static power shows that the ADD FinFET structure provides the lowest static power values due to a better DIBL control.","PeriodicalId":161858,"journal":{"name":"2012 4th Asia Symposium on Quality Electronic Design (ASQED)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-power and robust SRAM cells based on asymmetric FinFET structures\",\"authors\":\"B. Ebrahimi, R. Asadpour, A. Afzali-Kusha\",\"doi\":\"10.1109/ACQED.2012.6320473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the characteristics of low-power and robust SRAM cells based on asymmetric FinFET structures in a 32 nm technology. They are based on asymmetric source and drain structures and include Asymmetric Drain Spacer Extension (ADSE) and Asymmetric Doped Drain (ADD) FinFETs. The study includes two recently introduced 6-T SRAM cells based on these structures. In addition, we propose four transistor driverless (4-TDL) and loadless (4-TLL) SRAM cells based on these asymmetric structures. In the investigation, which compares the structures, the effect of different channel orientations is also considered. The results indicate that for 6-T, 4-TDL, and 4-TLL with different channel orientations asymmetric structures have higher read stabilities than the symmetric ones. In addition, the channel orientation (100) presents a higher read stability for 4-TLL while the channel orientation (110) gives rise to a better read stability for 6-T and 4-TDL. Asymmetric structures, however, have lower read currents where the ADSE structure leads to the least one. In terms of write operation, the asymmetric structures present better stability where 4-T cells outperform the 6-T cell. Finally, the results on static power shows that the ADD FinFET structure provides the lowest static power values due to a better DIBL control.\",\"PeriodicalId\":161858,\"journal\":{\"name\":\"2012 4th Asia Symposium on Quality Electronic Design (ASQED)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th Asia Symposium on Quality Electronic Design (ASQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACQED.2012.6320473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th Asia Symposium on Quality Electronic Design (ASQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACQED.2012.6320473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-power and robust SRAM cells based on asymmetric FinFET structures
In this paper, we investigate the characteristics of low-power and robust SRAM cells based on asymmetric FinFET structures in a 32 nm technology. They are based on asymmetric source and drain structures and include Asymmetric Drain Spacer Extension (ADSE) and Asymmetric Doped Drain (ADD) FinFETs. The study includes two recently introduced 6-T SRAM cells based on these structures. In addition, we propose four transistor driverless (4-TDL) and loadless (4-TLL) SRAM cells based on these asymmetric structures. In the investigation, which compares the structures, the effect of different channel orientations is also considered. The results indicate that for 6-T, 4-TDL, and 4-TLL with different channel orientations asymmetric structures have higher read stabilities than the symmetric ones. In addition, the channel orientation (100) presents a higher read stability for 4-TLL while the channel orientation (110) gives rise to a better read stability for 6-T and 4-TDL. Asymmetric structures, however, have lower read currents where the ADSE structure leads to the least one. In terms of write operation, the asymmetric structures present better stability where 4-T cells outperform the 6-T cell. Finally, the results on static power shows that the ADD FinFET structure provides the lowest static power values due to a better DIBL control.