T. Merkle, A. Leuther, S. Koch, I. Kallfass, A. Tessmann, S. Wagner, H. Massler, M. Schlechtweg, O. Ambacher
{"title":"20nm mHEMT技术中d波段和h波段无后侧工艺宽带放大器mmic","authors":"T. Merkle, A. Leuther, S. Koch, I. Kallfass, A. Tessmann, S. Wagner, H. Massler, M. Schlechtweg, O. Ambacher","doi":"10.1109/CSICS.2014.6978544","DOIUrl":null,"url":null,"abstract":"High gain amplifier MMICs (monolithic microwave integrated circuits) addressing broadband radar and communication applications at the waveguide bands WR-6 (110 - 170 GHz) and WR-3 (220 - 325 GHz) are presented. All circuits are manufactured in the next generation metamorphic high electron mobility transistor (mHEMT) technology featuring 20 nm gate length and a strained 100% InAs channel. The transistors are encapsulated by 0.3 μm and 1.4 μm thick layers of benzocyclobutene (BCB). The 1.4 μm thick BCB layer is used to form shielded thin-film microstrip (TFMS) lines confined at the front-side of the wafer for implementing matching networks. Substrate thinning and backside processing is not required for the function of the amplifiers. The amplifier for WR-6 operates over the whole waveguide band with an average gain of 28 dB. A gain of more than 24 dB was measured for the MMIC from 215 - 290 GHz. All presented MMICs exceed 30% of gain defined bandwidth.","PeriodicalId":309722,"journal":{"name":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Backside Process Free Broadband Amplifier MMICs at D-Band and H-Band in 20 nm mHEMT Technology\",\"authors\":\"T. Merkle, A. Leuther, S. Koch, I. Kallfass, A. Tessmann, S. Wagner, H. Massler, M. Schlechtweg, O. Ambacher\",\"doi\":\"10.1109/CSICS.2014.6978544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High gain amplifier MMICs (monolithic microwave integrated circuits) addressing broadband radar and communication applications at the waveguide bands WR-6 (110 - 170 GHz) and WR-3 (220 - 325 GHz) are presented. All circuits are manufactured in the next generation metamorphic high electron mobility transistor (mHEMT) technology featuring 20 nm gate length and a strained 100% InAs channel. The transistors are encapsulated by 0.3 μm and 1.4 μm thick layers of benzocyclobutene (BCB). The 1.4 μm thick BCB layer is used to form shielded thin-film microstrip (TFMS) lines confined at the front-side of the wafer for implementing matching networks. Substrate thinning and backside processing is not required for the function of the amplifiers. The amplifier for WR-6 operates over the whole waveguide band with an average gain of 28 dB. A gain of more than 24 dB was measured for the MMIC from 215 - 290 GHz. All presented MMICs exceed 30% of gain defined bandwidth.\",\"PeriodicalId\":309722,\"journal\":{\"name\":\"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2014.6978544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2014.6978544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backside Process Free Broadband Amplifier MMICs at D-Band and H-Band in 20 nm mHEMT Technology
High gain amplifier MMICs (monolithic microwave integrated circuits) addressing broadband radar and communication applications at the waveguide bands WR-6 (110 - 170 GHz) and WR-3 (220 - 325 GHz) are presented. All circuits are manufactured in the next generation metamorphic high electron mobility transistor (mHEMT) technology featuring 20 nm gate length and a strained 100% InAs channel. The transistors are encapsulated by 0.3 μm and 1.4 μm thick layers of benzocyclobutene (BCB). The 1.4 μm thick BCB layer is used to form shielded thin-film microstrip (TFMS) lines confined at the front-side of the wafer for implementing matching networks. Substrate thinning and backside processing is not required for the function of the amplifiers. The amplifier for WR-6 operates over the whole waveguide band with an average gain of 28 dB. A gain of more than 24 dB was measured for the MMIC from 215 - 290 GHz. All presented MMICs exceed 30% of gain defined bandwidth.