基于多尺度局部二值模式描述子和KL散度的人耳识别

Z. Youbi, L. Boubchir, Meriem Dorsaf Bounneche, A. A. Chérif, A. Boukrouche
{"title":"基于多尺度局部二值模式描述子和KL散度的人耳识别","authors":"Z. Youbi, L. Boubchir, Meriem Dorsaf Bounneche, A. A. Chérif, A. Boukrouche","doi":"10.1109/TSP.2016.7760971","DOIUrl":null,"url":null,"abstract":"This paper presents a novel human ear recognition approach based on Multi-scale Local Binary Pattern (MLBP) descriptor to enhance the recognition performance. The proposed method includes the following two steps: (i) the feature extraction step that computes the MLBP descriptor-based features from human ear images, and (ii) the matching process that uses the Kullback Leibler (KL) distance to capture efficiently the similarities/dissimilarities between the feature vectors and then make a decision. The proposed method is performed using the IIT Delhi Ear database and then compared to the state-of-the-art methods. The results obtained have shown that the proposed method achieves satisfying identification performances up to 95% in terms of rank-1 identification rate.","PeriodicalId":159773,"journal":{"name":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Human Ear recognition based on Multi-scale Local Binary Pattern descriptor and KL divergence\",\"authors\":\"Z. Youbi, L. Boubchir, Meriem Dorsaf Bounneche, A. A. Chérif, A. Boukrouche\",\"doi\":\"10.1109/TSP.2016.7760971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel human ear recognition approach based on Multi-scale Local Binary Pattern (MLBP) descriptor to enhance the recognition performance. The proposed method includes the following two steps: (i) the feature extraction step that computes the MLBP descriptor-based features from human ear images, and (ii) the matching process that uses the Kullback Leibler (KL) distance to capture efficiently the similarities/dissimilarities between the feature vectors and then make a decision. The proposed method is performed using the IIT Delhi Ear database and then compared to the state-of-the-art methods. The results obtained have shown that the proposed method achieves satisfying identification performances up to 95% in terms of rank-1 identification rate.\",\"PeriodicalId\":159773,\"journal\":{\"name\":\"2016 39th International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 39th International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2016.7760971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2016.7760971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

为了提高识别性能,提出了一种基于多尺度局部二值模式描述符的人耳识别方法。该方法包括以下两个步骤:(i)特征提取步骤,即从人耳图像中计算基于MLBP描述符的特征;(ii)匹配过程,即利用Kullback Leibler (KL)距离有效地捕获特征向量之间的相似/不相似并做出决策。所提出的方法是使用印度理工学院德里Ear数据库执行的,然后与最先进的方法进行比较。结果表明,该方法在一级识别率方面达到了令人满意的95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Ear recognition based on Multi-scale Local Binary Pattern descriptor and KL divergence
This paper presents a novel human ear recognition approach based on Multi-scale Local Binary Pattern (MLBP) descriptor to enhance the recognition performance. The proposed method includes the following two steps: (i) the feature extraction step that computes the MLBP descriptor-based features from human ear images, and (ii) the matching process that uses the Kullback Leibler (KL) distance to capture efficiently the similarities/dissimilarities between the feature vectors and then make a decision. The proposed method is performed using the IIT Delhi Ear database and then compared to the state-of-the-art methods. The results obtained have shown that the proposed method achieves satisfying identification performances up to 95% in terms of rank-1 identification rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信