改进了多回合对话框中响应生成的一致性

Takamune Onishi, Sakuei Onishi, Hiromitsu Shiina
{"title":"改进了多回合对话框中响应生成的一致性","authors":"Takamune Onishi, Sakuei Onishi, Hiromitsu Shiina","doi":"10.1109/IIAIAAI55812.2022.00088","DOIUrl":null,"url":null,"abstract":"The consistency of response generation in multi-turn dialog must be improved. The existing VHDER model, that extends the RNN model to dialog generation, does not distinguish turns. Thus, in this study, we improve it by adding implementing a User-RNN that corresponds to a speaker who conveys information every odd and even turn. In addition, the global vibrational transformer model, which applies the CVAE, an advanced autoencoder, enables diverse response generation. However, latent variables sampled from the entire context are diluted by speaker characteristics, which degrades the consistency of generated responses. In this study, we employed speaker-specific latent variables to generate speaker-consistent responses.","PeriodicalId":156230,"journal":{"name":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Response Generation Consistency in Multiturn Dialog\",\"authors\":\"Takamune Onishi, Sakuei Onishi, Hiromitsu Shiina\",\"doi\":\"10.1109/IIAIAAI55812.2022.00088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consistency of response generation in multi-turn dialog must be improved. The existing VHDER model, that extends the RNN model to dialog generation, does not distinguish turns. Thus, in this study, we improve it by adding implementing a User-RNN that corresponds to a speaker who conveys information every odd and even turn. In addition, the global vibrational transformer model, which applies the CVAE, an advanced autoencoder, enables diverse response generation. However, latent variables sampled from the entire context are diluted by speaker characteristics, which degrades the consistency of generated responses. In this study, we employed speaker-specific latent variables to generate speaker-consistent responses.\",\"PeriodicalId\":156230,\"journal\":{\"name\":\"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAIAAI55812.2022.00088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAIAAI55812.2022.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多回合对话中响应生成的一致性有待提高。现有的VHDER模型将RNN模型扩展到对话生成,但不区分回合。因此,在本研究中,我们通过添加实现一个User-RNN来改进它,该rnn对应于每奇数和偶数回合传递信息的说话者。此外,采用CVAE(一种先进的自编码器)的全局振动变压器模型可以产生多种响应。然而,从整个上下文中采样的潜在变量被说话者特征稀释,这降低了生成响应的一致性。在这项研究中,我们采用说话人特定的潜在变量来产生说话人一致的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Response Generation Consistency in Multiturn Dialog
The consistency of response generation in multi-turn dialog must be improved. The existing VHDER model, that extends the RNN model to dialog generation, does not distinguish turns. Thus, in this study, we improve it by adding implementing a User-RNN that corresponds to a speaker who conveys information every odd and even turn. In addition, the global vibrational transformer model, which applies the CVAE, an advanced autoencoder, enables diverse response generation. However, latent variables sampled from the entire context are diluted by speaker characteristics, which degrades the consistency of generated responses. In this study, we employed speaker-specific latent variables to generate speaker-consistent responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信