我以前见过:基于类比学习能力的记忆增强神经网络

Paul Schydlo, Laura Santos, Atabak Dehban, A. John, J. Santos-Victor
{"title":"我以前见过:基于类比学习能力的记忆增强神经网络","authors":"Paul Schydlo, Laura Santos, Atabak Dehban, A. John, J. Santos-Victor","doi":"10.1109/ICDL53763.2022.9962191","DOIUrl":null,"url":null,"abstract":"Humans show a remarkable ability to quickly adapt to new situations without forgetting past ones. Existing learning methods still face problems with catastrophic forgetting when learning about new situations and contexts while taking many iterations to adjust to new input and output pairs. In this work, we propose the application of a Memory augmented network to the problem of learning tool affordances. We consider a network that explicitly indexes an episodic memory of past experiences and retrieves samples of past experience to reason about new situations by analogy, in an approach we call affordances by analogy. The work takes advantage of a tool-object interaction dataset to learn affordances. Our experiments show the model outperforms the baselines in the low sample regime and retains information better when re-trained on a different data distribution. Hinting at a promising direction, this work could enable learning algorithms to retain information better.","PeriodicalId":274171,"journal":{"name":"2022 IEEE International Conference on Development and Learning (ICDL)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I Have Seen that Before: Memory Augmented Neural Network for Learning Affordances by Analogy\",\"authors\":\"Paul Schydlo, Laura Santos, Atabak Dehban, A. John, J. Santos-Victor\",\"doi\":\"10.1109/ICDL53763.2022.9962191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans show a remarkable ability to quickly adapt to new situations without forgetting past ones. Existing learning methods still face problems with catastrophic forgetting when learning about new situations and contexts while taking many iterations to adjust to new input and output pairs. In this work, we propose the application of a Memory augmented network to the problem of learning tool affordances. We consider a network that explicitly indexes an episodic memory of past experiences and retrieves samples of past experience to reason about new situations by analogy, in an approach we call affordances by analogy. The work takes advantage of a tool-object interaction dataset to learn affordances. Our experiments show the model outperforms the baselines in the low sample regime and retains information better when re-trained on a different data distribution. Hinting at a promising direction, this work could enable learning algorithms to retain information better.\",\"PeriodicalId\":274171,\"journal\":{\"name\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL53763.2022.9962191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL53763.2022.9962191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类表现出一种非凡的能力,能够迅速适应新环境,而不会忘记过去的情况。现有的学习方法在学习新的情况和背景时仍然面临灾难性遗忘的问题,同时需要许多迭代来适应新的输入和输出对。在这项工作中,我们提出将记忆增强网络应用于学习工具的支持问题。我们考虑一个网络,它明确地索引过去经验的情景记忆,并检索过去经验的样本,通过类比来推理新的情况,我们称之为类比的能力支持。这项工作利用工具-对象交互数据集来学习启示。我们的实验表明,该模型在低样本状态下优于基线,并且在不同的数据分布上重新训练时可以更好地保留信息。这项工作预示着一个有前途的方向,它可以使学习算法更好地保留信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I Have Seen that Before: Memory Augmented Neural Network for Learning Affordances by Analogy
Humans show a remarkable ability to quickly adapt to new situations without forgetting past ones. Existing learning methods still face problems with catastrophic forgetting when learning about new situations and contexts while taking many iterations to adjust to new input and output pairs. In this work, we propose the application of a Memory augmented network to the problem of learning tool affordances. We consider a network that explicitly indexes an episodic memory of past experiences and retrieves samples of past experience to reason about new situations by analogy, in an approach we call affordances by analogy. The work takes advantage of a tool-object interaction dataset to learn affordances. Our experiments show the model outperforms the baselines in the low sample regime and retains information better when re-trained on a different data distribution. Hinting at a promising direction, this work could enable learning algorithms to retain information better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信