{"title":"都市农业和垂直农业对未来可持续发展的意义","authors":"Anwesha Chatterjee, S. Debnath, Harshata Pal","doi":"10.5772/intechopen.91133","DOIUrl":null,"url":null,"abstract":"Urban agriculture (UA) is defined as the production of agricultural goods (crop) and livestock goods within urban areas like cities and towns. In the modern days, the urbanization process has raised a question on the sustainable development and growing of urban population. UA has been claimed to contribute to urban waste recycling, efficient water use and energy conservation, reduction in air pollution and soil erosion, urban beautification, climate change adaptation and resilience, disaster prevention, and ecological and social urban sustainability. Therefore, UA contributes to the sustainability of cities in various ways--socially, economically, and environmentally. An urban farming technology that involves the large-scale agricultural production in the urban surroundings is the vertical farming (VF) or high-rise farming technology. It enables fast growth and production of the crops by maintaining the environmental conditions and nutrient solutions to crop based on hydroponics technology. Vertical farms are able to grow food year-round because they maintain consistent growing conditions regardless of the weather outside and are much less vulnerable to climate changes. This promises a steady flow of products for the consumers and a consistent income for growers. Various advantages of VF over traditional farming, such as reduced farm inputs and crop failures and restored farmland, have enabled scientists to implement VF on a large scale.","PeriodicalId":281844,"journal":{"name":"Urban Horticulture - Necessity of the Future","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Implication of Urban Agriculture and Vertical Farming for Future Sustainability\",\"authors\":\"Anwesha Chatterjee, S. Debnath, Harshata Pal\",\"doi\":\"10.5772/intechopen.91133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban agriculture (UA) is defined as the production of agricultural goods (crop) and livestock goods within urban areas like cities and towns. In the modern days, the urbanization process has raised a question on the sustainable development and growing of urban population. UA has been claimed to contribute to urban waste recycling, efficient water use and energy conservation, reduction in air pollution and soil erosion, urban beautification, climate change adaptation and resilience, disaster prevention, and ecological and social urban sustainability. Therefore, UA contributes to the sustainability of cities in various ways--socially, economically, and environmentally. An urban farming technology that involves the large-scale agricultural production in the urban surroundings is the vertical farming (VF) or high-rise farming technology. It enables fast growth and production of the crops by maintaining the environmental conditions and nutrient solutions to crop based on hydroponics technology. Vertical farms are able to grow food year-round because they maintain consistent growing conditions regardless of the weather outside and are much less vulnerable to climate changes. This promises a steady flow of products for the consumers and a consistent income for growers. Various advantages of VF over traditional farming, such as reduced farm inputs and crop failures and restored farmland, have enabled scientists to implement VF on a large scale.\",\"PeriodicalId\":281844,\"journal\":{\"name\":\"Urban Horticulture - Necessity of the Future\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Horticulture - Necessity of the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.91133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Horticulture - Necessity of the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implication of Urban Agriculture and Vertical Farming for Future Sustainability
Urban agriculture (UA) is defined as the production of agricultural goods (crop) and livestock goods within urban areas like cities and towns. In the modern days, the urbanization process has raised a question on the sustainable development and growing of urban population. UA has been claimed to contribute to urban waste recycling, efficient water use and energy conservation, reduction in air pollution and soil erosion, urban beautification, climate change adaptation and resilience, disaster prevention, and ecological and social urban sustainability. Therefore, UA contributes to the sustainability of cities in various ways--socially, economically, and environmentally. An urban farming technology that involves the large-scale agricultural production in the urban surroundings is the vertical farming (VF) or high-rise farming technology. It enables fast growth and production of the crops by maintaining the environmental conditions and nutrient solutions to crop based on hydroponics technology. Vertical farms are able to grow food year-round because they maintain consistent growing conditions regardless of the weather outside and are much less vulnerable to climate changes. This promises a steady flow of products for the consumers and a consistent income for growers. Various advantages of VF over traditional farming, such as reduced farm inputs and crop failures and restored farmland, have enabled scientists to implement VF on a large scale.