J. Pomeroy, M. Bernardoni, A. Sarua, A. Manoi, D. Dumka, D. Fanning, Martin Kuball
{"title":"实现金刚石上氮化镓的最佳热性能","authors":"J. Pomeroy, M. Bernardoni, A. Sarua, A. Manoi, D. Dumka, D. Fanning, Martin Kuball","doi":"10.1109/CSICS.2013.6659210","DOIUrl":null,"url":null,"abstract":"GaN-based RF transistors offer impressive power densities, although to achieve the maximum potential offered by GaN, thermal management must be improved beyond the current GaN-on-SiC devices. By using diamond, rather than SiC substrates, transistor thermal resistance can be significantly reduced. It is important to experimentally verify thermal resistance, rather than relying solely on simulation expectations, using measurement results to aid further optimization. The novel thermal characterization methodology presented here combines Raman thermography and simulation to determine the substrate thermal conductivity and GaN/substrate thermal resistance in GaN-on-diamond devices. Measured GaN-on-diamond interfacial thermal resistance is similar to reported values for GaN-on-SiC, whereas the diamond substrate thermal conductivity is substantially higher, resulting in a significantly improved thermal resistance with respect to GaN-on-SiC, with great potential for further improvement.","PeriodicalId":257256,"journal":{"name":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Achieving the Best Thermal Performance for GaN-on-Diamond\",\"authors\":\"J. Pomeroy, M. Bernardoni, A. Sarua, A. Manoi, D. Dumka, D. Fanning, Martin Kuball\",\"doi\":\"10.1109/CSICS.2013.6659210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaN-based RF transistors offer impressive power densities, although to achieve the maximum potential offered by GaN, thermal management must be improved beyond the current GaN-on-SiC devices. By using diamond, rather than SiC substrates, transistor thermal resistance can be significantly reduced. It is important to experimentally verify thermal resistance, rather than relying solely on simulation expectations, using measurement results to aid further optimization. The novel thermal characterization methodology presented here combines Raman thermography and simulation to determine the substrate thermal conductivity and GaN/substrate thermal resistance in GaN-on-diamond devices. Measured GaN-on-diamond interfacial thermal resistance is similar to reported values for GaN-on-SiC, whereas the diamond substrate thermal conductivity is substantially higher, resulting in a significantly improved thermal resistance with respect to GaN-on-SiC, with great potential for further improvement.\",\"PeriodicalId\":257256,\"journal\":{\"name\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2013.6659210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2013.6659210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving the Best Thermal Performance for GaN-on-Diamond
GaN-based RF transistors offer impressive power densities, although to achieve the maximum potential offered by GaN, thermal management must be improved beyond the current GaN-on-SiC devices. By using diamond, rather than SiC substrates, transistor thermal resistance can be significantly reduced. It is important to experimentally verify thermal resistance, rather than relying solely on simulation expectations, using measurement results to aid further optimization. The novel thermal characterization methodology presented here combines Raman thermography and simulation to determine the substrate thermal conductivity and GaN/substrate thermal resistance in GaN-on-diamond devices. Measured GaN-on-diamond interfacial thermal resistance is similar to reported values for GaN-on-SiC, whereas the diamond substrate thermal conductivity is substantially higher, resulting in a significantly improved thermal resistance with respect to GaN-on-SiC, with great potential for further improvement.