R. Molina-Robles, R. García-Ramírez, A. Chacón-Rodríguez, R. Rímolo-Donadío, A. Arnaud
{"title":"一个经济实惠的后硅测试框架应用于基于RISC-V的微控制器","authors":"R. Molina-Robles, R. García-Ramírez, A. Chacón-Rodríguez, R. Rímolo-Donadío, A. Arnaud","doi":"10.1109/LAEDC51812.2021.9437939","DOIUrl":null,"url":null,"abstract":"The RISC-V architecture is a very attractive option for developing application specific systems needing an affordable yet efficient central processing unit. Post-silicon validation on RISC-V applications has been done in industry for a while, however documentation is scarce. This paper proposes a practical low-cost post-silicon testing framework applied to a RISC-V RV32I based microcontroller. The framework uses FPGA-based emulation as a cornerstone to test the microcontroller before and after its fabrication. The platform only requires a handful of elements like the FPGA, a PC, the fabricated chip and some discrete components, without losing the capacity to functionally validate the design under test and save development testing time by using a re-utilize philosophy.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"217 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An affordable post-silicon testing framework applied to a RISC-V based microcontroller\",\"authors\":\"R. Molina-Robles, R. García-Ramírez, A. Chacón-Rodríguez, R. Rímolo-Donadío, A. Arnaud\",\"doi\":\"10.1109/LAEDC51812.2021.9437939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RISC-V architecture is a very attractive option for developing application specific systems needing an affordable yet efficient central processing unit. Post-silicon validation on RISC-V applications has been done in industry for a while, however documentation is scarce. This paper proposes a practical low-cost post-silicon testing framework applied to a RISC-V RV32I based microcontroller. The framework uses FPGA-based emulation as a cornerstone to test the microcontroller before and after its fabrication. The platform only requires a handful of elements like the FPGA, a PC, the fabricated chip and some discrete components, without losing the capacity to functionally validate the design under test and save development testing time by using a re-utilize philosophy.\",\"PeriodicalId\":112590,\"journal\":{\"name\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"volume\":\"217 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAEDC51812.2021.9437939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC51812.2021.9437939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An affordable post-silicon testing framework applied to a RISC-V based microcontroller
The RISC-V architecture is a very attractive option for developing application specific systems needing an affordable yet efficient central processing unit. Post-silicon validation on RISC-V applications has been done in industry for a while, however documentation is scarce. This paper proposes a practical low-cost post-silicon testing framework applied to a RISC-V RV32I based microcontroller. The framework uses FPGA-based emulation as a cornerstone to test the microcontroller before and after its fabrication. The platform only requires a handful of elements like the FPGA, a PC, the fabricated chip and some discrete components, without losing the capacity to functionally validate the design under test and save development testing time by using a re-utilize philosophy.