阿拉伯语文本分类:特征选择方法综述

M. Hijazi, A. Zeki, A. Ismail
{"title":"阿拉伯语文本分类:特征选择方法综述","authors":"M. Hijazi, A. Zeki, A. Ismail","doi":"10.1109/acit53391.2021.9677185","DOIUrl":null,"url":null,"abstract":"The list of features and text representation model that is utilized are critical components that determine the performance and accuracy of text categorization. Feature selection is a technique for improving classification accuracy and processing efficiency by removing redundant or superfluous words (features) and keeping only those that give vital information that assists in categorization. This paper presents the recent researches that studied the impact of feature selection methods on Arabic text classification.","PeriodicalId":302120,"journal":{"name":"2021 22nd International Arab Conference on Information Technology (ACIT)","volume":"160 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arabic Text Classification: A Review Study on Feature Selection Methods\",\"authors\":\"M. Hijazi, A. Zeki, A. Ismail\",\"doi\":\"10.1109/acit53391.2021.9677185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The list of features and text representation model that is utilized are critical components that determine the performance and accuracy of text categorization. Feature selection is a technique for improving classification accuracy and processing efficiency by removing redundant or superfluous words (features) and keeping only those that give vital information that assists in categorization. This paper presents the recent researches that studied the impact of feature selection methods on Arabic text classification.\",\"PeriodicalId\":302120,\"journal\":{\"name\":\"2021 22nd International Arab Conference on Information Technology (ACIT)\",\"volume\":\"160 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/acit53391.2021.9677185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acit53391.2021.9677185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

所使用的特征列表和文本表示模型是决定文本分类性能和准确性的关键组件。特征选择是一种通过去除冗余或多余的词(特征)并只保留那些提供有助于分类的重要信息来提高分类准确性和处理效率的技术。本文介绍了特征选择方法对阿拉伯语文本分类影响的最新研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic Text Classification: A Review Study on Feature Selection Methods
The list of features and text representation model that is utilized are critical components that determine the performance and accuracy of text categorization. Feature selection is a technique for improving classification accuracy and processing efficiency by removing redundant or superfluous words (features) and keeping only those that give vital information that assists in categorization. This paper presents the recent researches that studied the impact of feature selection methods on Arabic text classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信