基于改进FCM和数学形态学的眼底病变识别

Li Hua, Hui Zhang
{"title":"基于改进FCM和数学形态学的眼底病变识别","authors":"Li Hua, Hui Zhang","doi":"10.1109/ICSESS.2012.6269420","DOIUrl":null,"url":null,"abstract":"Fundus lesion identification is a worldwide problem. The traditional method has greater impact on human factors, subjective and cumbersome makes Fundus lesion identification Accuracy, objectivity and practicality not be guaranteed. To solve the above problem, an improved FCM algorithm for segmentation of Fundus lesion, the improved FCM algorithm clustering image segmentation Fundus lesion, and then remove the noise by mathematical morphology operations. Experimental results show that the algorithm can effectively identify the lesion in the Fundus image.","PeriodicalId":205738,"journal":{"name":"2012 IEEE International Conference on Computer Science and Automation Engineering","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundus lesion identification based on the improved FCM and mathematical morphology\",\"authors\":\"Li Hua, Hui Zhang\",\"doi\":\"10.1109/ICSESS.2012.6269420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fundus lesion identification is a worldwide problem. The traditional method has greater impact on human factors, subjective and cumbersome makes Fundus lesion identification Accuracy, objectivity and practicality not be guaranteed. To solve the above problem, an improved FCM algorithm for segmentation of Fundus lesion, the improved FCM algorithm clustering image segmentation Fundus lesion, and then remove the noise by mathematical morphology operations. Experimental results show that the algorithm can effectively identify the lesion in the Fundus image.\",\"PeriodicalId\":205738,\"journal\":{\"name\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2012.6269420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2012.6269420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

眼底病变的鉴别是一个世界性的难题。传统方法受人为因素影响较大,主观性和繁琐性使得眼底病变识别的准确性、客观性和实用性得不到保证。针对上述问题,采用改进的FCM算法对眼底病灶进行分割,将改进的FCM算法聚类图像分割眼底病灶,然后通过数学形态学运算去除噪声。实验结果表明,该算法能有效地识别眼底图像中的病灶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundus lesion identification based on the improved FCM and mathematical morphology
Fundus lesion identification is a worldwide problem. The traditional method has greater impact on human factors, subjective and cumbersome makes Fundus lesion identification Accuracy, objectivity and practicality not be guaranteed. To solve the above problem, an improved FCM algorithm for segmentation of Fundus lesion, the improved FCM algorithm clustering image segmentation Fundus lesion, and then remove the noise by mathematical morphology operations. Experimental results show that the algorithm can effectively identify the lesion in the Fundus image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信