非线性动态系统辨识

V. Shopov, V. Markova
{"title":"非线性动态系统辨识","authors":"V. Shopov, V. Markova","doi":"10.1109/InfoTech.2019.8860871","DOIUrl":null,"url":null,"abstract":"The behaviour of non-linear dynamic systems is studied. In this paper, the authors investigate the modelling and prediction abilities of a Recurrent Neural Network, Long Short Term Memory and Gated Recurrent Unit networks. The the input data sets has a chaotic nature. The effectiveness of all networks in modelling the several chaotic attractors is studied. And a comparison of their prediction quality is made.","PeriodicalId":179336,"journal":{"name":"2019 International Conference on Information Technologies (InfoTech)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Identification of Non-linear Dynamic System\",\"authors\":\"V. Shopov, V. Markova\",\"doi\":\"10.1109/InfoTech.2019.8860871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behaviour of non-linear dynamic systems is studied. In this paper, the authors investigate the modelling and prediction abilities of a Recurrent Neural Network, Long Short Term Memory and Gated Recurrent Unit networks. The the input data sets has a chaotic nature. The effectiveness of all networks in modelling the several chaotic attractors is studied. And a comparison of their prediction quality is made.\",\"PeriodicalId\":179336,\"journal\":{\"name\":\"2019 International Conference on Information Technologies (InfoTech)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Information Technologies (InfoTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InfoTech.2019.8860871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information Technologies (InfoTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InfoTech.2019.8860871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了非线性动力系统的行为。在本文中,作者研究了递归神经网络、长短期记忆和门控递归单元网络的建模和预测能力。输入数据集具有混沌性。研究了所有网络对几种混沌吸引子建模的有效性。并对它们的预测质量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Non-linear Dynamic System
The behaviour of non-linear dynamic systems is studied. In this paper, the authors investigate the modelling and prediction abilities of a Recurrent Neural Network, Long Short Term Memory and Gated Recurrent Unit networks. The the input data sets has a chaotic nature. The effectiveness of all networks in modelling the several chaotic attractors is studied. And a comparison of their prediction quality is made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信