人脸识别中特征提取方法的评价

Yin Liu, Chuanzhen Li, Bailiang Su, Hui Wang
{"title":"人脸识别中特征提取方法的评价","authors":"Yin Liu, Chuanzhen Li, Bailiang Su, Hui Wang","doi":"10.1109/ISCID.2013.192","DOIUrl":null,"url":null,"abstract":"Feature operators can transform raw pixel values of an image into a representation better suited to the later processing and classification steps in the face recognition system. In this paper, we evaluate the performance of 6 feature extraction methods, i.e., Local Binary Patterns, Histograms of Oriented Gradients, Scale Invariant Feature Transform, Speed-Up Robust Features, Fully Affine SIFT and Gabor features. Each feature was tested on 3 face databases of Yale, ORL and UMIST. The experimental recognition rate and matching time are given and compared to indicate different preferential features for different application conditions. ASIFT has the best result in recognition rate while SURF outperforms others in matching time.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of Feature Extraction Methods for Face Recognition\",\"authors\":\"Yin Liu, Chuanzhen Li, Bailiang Su, Hui Wang\",\"doi\":\"10.1109/ISCID.2013.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature operators can transform raw pixel values of an image into a representation better suited to the later processing and classification steps in the face recognition system. In this paper, we evaluate the performance of 6 feature extraction methods, i.e., Local Binary Patterns, Histograms of Oriented Gradients, Scale Invariant Feature Transform, Speed-Up Robust Features, Fully Affine SIFT and Gabor features. Each feature was tested on 3 face databases of Yale, ORL and UMIST. The experimental recognition rate and matching time are given and compared to indicate different preferential features for different application conditions. ASIFT has the best result in recognition rate while SURF outperforms others in matching time.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

特征算子可以将图像的原始像素值转换为更适合人脸识别系统后期处理和分类步骤的表示。在本文中,我们评估了6种特征提取方法的性能,即局部二值模式,定向梯度直方图,尺度不变特征变换,加速鲁棒特征,全仿射SIFT和Gabor特征。每个特征在耶鲁大学、ORL和UMIST的3个人脸数据库上进行了测试。给出了实验识别率和匹配时间,对比了不同应用条件下的不同优先特征。ASIFT在识别率上效果最好,SURF在匹配时间上优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Feature Extraction Methods for Face Recognition
Feature operators can transform raw pixel values of an image into a representation better suited to the later processing and classification steps in the face recognition system. In this paper, we evaluate the performance of 6 feature extraction methods, i.e., Local Binary Patterns, Histograms of Oriented Gradients, Scale Invariant Feature Transform, Speed-Up Robust Features, Fully Affine SIFT and Gabor features. Each feature was tested on 3 face databases of Yale, ORL and UMIST. The experimental recognition rate and matching time are given and compared to indicate different preferential features for different application conditions. ASIFT has the best result in recognition rate while SURF outperforms others in matching time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信