随机漫步算法的量子电路设计

A. Chakrabarti, Chia-Chun Lin, N. Jha
{"title":"随机漫步算法的量子电路设计","authors":"A. Chakrabarti, Chia-Chun Lin, N. Jha","doi":"10.1109/ISVLSI.2012.45","DOIUrl":null,"url":null,"abstract":"A quantum algorithm is defined by a sequence of operations that runs on a realistic model of quantum computation. Since the first quantum algorithm proposed by David Deutsch(1985), a large number of impressive quantum algorithms have been developed. Quantum random walks on a graph, which are analogous to classical stochastic walk, form the basis for some of the recent quantum algorithms that promise to significantly outperform existing classical random walk algorithms. Though research has been done on the application of quantum random walk to important computational problems, very little work has been done on its quantum circuit design. There are two types of quantum random walk algorithms: discrete-time and continuous-time. In this paper, we propose quantum circuit designs for both types of random walk algorithms that operate on various graphs. We consider in detail two important problems to which random walk algorithms are applicable: the triangle finding problem and binary welded tree problem. Though there exist a few research works related to quantum circuit design for random walk on graphs, to the best of our knowledge, the circuit designs we present here are first of their kind. We also provide an estimate of the quantum cost of these circuits for several physical machine descriptions (PMDs)of quantum systems, based on the number of quantum operations and execution cycles.","PeriodicalId":398850,"journal":{"name":"2012 IEEE Computer Society Annual Symposium on VLSI","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Design of Quantum Circuits for Random Walk Algorithms\",\"authors\":\"A. Chakrabarti, Chia-Chun Lin, N. Jha\",\"doi\":\"10.1109/ISVLSI.2012.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantum algorithm is defined by a sequence of operations that runs on a realistic model of quantum computation. Since the first quantum algorithm proposed by David Deutsch(1985), a large number of impressive quantum algorithms have been developed. Quantum random walks on a graph, which are analogous to classical stochastic walk, form the basis for some of the recent quantum algorithms that promise to significantly outperform existing classical random walk algorithms. Though research has been done on the application of quantum random walk to important computational problems, very little work has been done on its quantum circuit design. There are two types of quantum random walk algorithms: discrete-time and continuous-time. In this paper, we propose quantum circuit designs for both types of random walk algorithms that operate on various graphs. We consider in detail two important problems to which random walk algorithms are applicable: the triangle finding problem and binary welded tree problem. Though there exist a few research works related to quantum circuit design for random walk on graphs, to the best of our knowledge, the circuit designs we present here are first of their kind. We also provide an estimate of the quantum cost of these circuits for several physical machine descriptions (PMDs)of quantum systems, based on the number of quantum operations and execution cycles.\",\"PeriodicalId\":398850,\"journal\":{\"name\":\"2012 IEEE Computer Society Annual Symposium on VLSI\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Computer Society Annual Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2012.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2012.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

量子算法是由运行在现实量子计算模型上的一系列操作定义的。自David Deutsch(1985)提出第一个量子算法以来,已经开发了大量令人印象深刻的量子算法。图上的量子随机漫步,类似于经典随机漫步,构成了最近一些量子算法的基础,这些算法有望显著优于现有的经典随机漫步算法。虽然人们已经对量子随机漫步在重要计算问题中的应用进行了研究,但对其量子电路设计的研究却很少。有两种类型的量子随机行走算法:离散时间和连续时间。在本文中,我们提出了两种类型的随机漫步算法的量子电路设计,这些算法在不同的图上运行。我们详细地考虑了随机行走算法适用的两个重要问题:三角形查找问题和二叉焊接树问题。虽然目前已经有一些与图上随机行走的量子电路设计相关的研究工作,但据我们所知,我们在这里提出的电路设计是第一个。我们还根据量子运算和执行周期的数量,对量子系统的几种物理机器描述(pmd)的这些电路的量子成本进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Quantum Circuits for Random Walk Algorithms
A quantum algorithm is defined by a sequence of operations that runs on a realistic model of quantum computation. Since the first quantum algorithm proposed by David Deutsch(1985), a large number of impressive quantum algorithms have been developed. Quantum random walks on a graph, which are analogous to classical stochastic walk, form the basis for some of the recent quantum algorithms that promise to significantly outperform existing classical random walk algorithms. Though research has been done on the application of quantum random walk to important computational problems, very little work has been done on its quantum circuit design. There are two types of quantum random walk algorithms: discrete-time and continuous-time. In this paper, we propose quantum circuit designs for both types of random walk algorithms that operate on various graphs. We consider in detail two important problems to which random walk algorithms are applicable: the triangle finding problem and binary welded tree problem. Though there exist a few research works related to quantum circuit design for random walk on graphs, to the best of our knowledge, the circuit designs we present here are first of their kind. We also provide an estimate of the quantum cost of these circuits for several physical machine descriptions (PMDs)of quantum systems, based on the number of quantum operations and execution cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信