基于cnn的图像识别节能混合架构设计

J. Choi, S. Srinivasa, Yasuki Tanabe, J. Sampson, N. Vijaykrishnan
{"title":"基于cnn的图像识别节能混合架构设计","authors":"J. Choi, S. Srinivasa, Yasuki Tanabe, J. Sampson, N. Vijaykrishnan","doi":"10.1109/ISVLSI.2018.00015","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) are proving to be highly effective in vision recognition systems. However, it is a challenge to use them in real-time embedded systems because of their requirements for computation-intensive operations and high memory bandwidth. This paper proposes a power-efficient CNN architecture that has a pipelined streaming accelerator coupled to 4,096 SIMD Processing Elements. We reduce memory bandwidth via hierarchical intermediate data buffering and batch processing on the chip. As a result, we achieve high power-efficiency: Our proposed design processes 2,175 regions/second when operating at 500MHz with a power budget less than 7.5 Watts.","PeriodicalId":114330,"journal":{"name":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Power-Efficient Hybrid Architecture Design for Image Recognition Using CNNs\",\"authors\":\"J. Choi, S. Srinivasa, Yasuki Tanabe, J. Sampson, N. Vijaykrishnan\",\"doi\":\"10.1109/ISVLSI.2018.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) are proving to be highly effective in vision recognition systems. However, it is a challenge to use them in real-time embedded systems because of their requirements for computation-intensive operations and high memory bandwidth. This paper proposes a power-efficient CNN architecture that has a pipelined streaming accelerator coupled to 4,096 SIMD Processing Elements. We reduce memory bandwidth via hierarchical intermediate data buffering and batch processing on the chip. As a result, we achieve high power-efficiency: Our proposed design processes 2,175 regions/second when operating at 500MHz with a power budget less than 7.5 Watts.\",\"PeriodicalId\":114330,\"journal\":{\"name\":\"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2018.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

卷积神经网络(cnn)在视觉识别系统中被证明是非常有效的。然而,由于它们对计算密集型操作和高内存带宽的要求,在实时嵌入式系统中使用它们是一个挑战。本文提出了一种低功耗的CNN架构,该架构具有耦合到4,096个SIMD处理元素的流水线流加速器。我们通过分层中间数据缓冲和芯片上的批处理来减少内存带宽。因此,我们实现了高功率效率:我们提出的设计在500MHz工作时每秒处理2,175个区域,功率预算低于7.5瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Power-Efficient Hybrid Architecture Design for Image Recognition Using CNNs
Convolutional Neural Networks (CNNs) are proving to be highly effective in vision recognition systems. However, it is a challenge to use them in real-time embedded systems because of their requirements for computation-intensive operations and high memory bandwidth. This paper proposes a power-efficient CNN architecture that has a pipelined streaming accelerator coupled to 4,096 SIMD Processing Elements. We reduce memory bandwidth via hierarchical intermediate data buffering and batch processing on the chip. As a result, we achieve high power-efficiency: Our proposed design processes 2,175 regions/second when operating at 500MHz with a power budget less than 7.5 Watts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信