含伪单调算子的非线性随机演化问题的概率弱解

Z. Ali, M. Sango
{"title":"含伪单调算子的非线性随机演化问题的概率弱解","authors":"Z. Ali, M. Sango","doi":"10.37863/umzh.v74i7.2286","DOIUrl":null,"url":null,"abstract":"UDC 519.21\nWe study an important class of stochastic nonlinear evolution problems with pseudomonotone elliptic parts and establish the existence of probabilistic weak (or martingale) solutions. No solvability theory has been developed so far for these equations despite numerous works involving various generalizations of the monotonicity condition. Key to our work is a sign result for the Ito differential of an approximate solution that we establish, as well as several compactness results of the analytic and probabilistic nature, and a characterization of pseudomonotone operators due to F. E. Browder.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic weak solutions for nonlinear stochastic evolution problems involving pseudomonotone operators\",\"authors\":\"Z. Ali, M. Sango\",\"doi\":\"10.37863/umzh.v74i7.2286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UDC 519.21\\nWe study an important class of stochastic nonlinear evolution problems with pseudomonotone elliptic parts and establish the existence of probabilistic weak (or martingale) solutions. No solvability theory has been developed so far for these equations despite numerous works involving various generalizations of the monotonicity condition. Key to our work is a sign result for the Ito differential of an approximate solution that we establish, as well as several compactness results of the analytic and probabilistic nature, and a characterization of pseudomonotone operators due to F. E. Browder.\",\"PeriodicalId\":163365,\"journal\":{\"name\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrains’kyi Matematychnyi Zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37863/umzh.v74i7.2286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/umzh.v74i7.2286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类重要的具有伪单调椭圆部分的随机非线性演化问题,建立了该问题的概率弱(或鞅)解的存在性。尽管有许多关于单调性条件的各种推广的工作,但迄今为止还没有建立起这些方程的可解性理论。我们工作的关键是我们建立的一个近似解的伊东微分的符号结果,以及几个解析和概率性质的紧致结果,以及由F. E. Browder引起的伪单调算子的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic weak solutions for nonlinear stochastic evolution problems involving pseudomonotone operators
UDC 519.21 We study an important class of stochastic nonlinear evolution problems with pseudomonotone elliptic parts and establish the existence of probabilistic weak (or martingale) solutions. No solvability theory has been developed so far for these equations despite numerous works involving various generalizations of the monotonicity condition. Key to our work is a sign result for the Ito differential of an approximate solution that we establish, as well as several compactness results of the analytic and probabilistic nature, and a characterization of pseudomonotone operators due to F. E. Browder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信