风速的统计分析与预报

Sakshi Shukla, Rohit Ramaprasad, S. Pasari, Sarita Sheoran
{"title":"风速的统计分析与预报","authors":"Sakshi Shukla, Rohit Ramaprasad, S. Pasari, Sarita Sheoran","doi":"10.1109/icepe55035.2022.9798358","DOIUrl":null,"url":null,"abstract":"Energy plays a vital role in urbanization and industrialization. Wind energy is highly valuable and accurate forecasts can help determine the best locations to set up windmills. Using a dataset comprising wind speeds from 15 years (2000–2014) within two locations of Rajasthan, namely Jaipur and Jaisalmer, we present a detailed statistical analysis including distribution analysis and forecasting using Moving Average (MA), Auto-Regressive (AR), Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). We show empirically why SARIMA is the best model and why the former four models are inadequate when it comes to forecasting wind speeds.","PeriodicalId":168114,"journal":{"name":"2022 4th International Conference on Energy, Power and Environment (ICEPE)","volume":"393 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Statistical Analysis and Forecasting of Wind Speed\",\"authors\":\"Sakshi Shukla, Rohit Ramaprasad, S. Pasari, Sarita Sheoran\",\"doi\":\"10.1109/icepe55035.2022.9798358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy plays a vital role in urbanization and industrialization. Wind energy is highly valuable and accurate forecasts can help determine the best locations to set up windmills. Using a dataset comprising wind speeds from 15 years (2000–2014) within two locations of Rajasthan, namely Jaipur and Jaisalmer, we present a detailed statistical analysis including distribution analysis and forecasting using Moving Average (MA), Auto-Regressive (AR), Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). We show empirically why SARIMA is the best model and why the former four models are inadequate when it comes to forecasting wind speeds.\",\"PeriodicalId\":168114,\"journal\":{\"name\":\"2022 4th International Conference on Energy, Power and Environment (ICEPE)\",\"volume\":\"393 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Energy, Power and Environment (ICEPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icepe55035.2022.9798358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Energy, Power and Environment (ICEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icepe55035.2022.9798358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

能源在城市化和工业化进程中起着至关重要的作用。风能非常有价值,准确的预报可以帮助确定建立风车的最佳地点。利用拉贾斯坦邦斋浦尔和斋萨尔默两个地点15年(2000-2014)的风速数据集,我们提出了详细的统计分析,包括分布分析和使用移动平均(MA)、自回归(AR)、自回归移动平均(ARMA)、自回归综合移动平均(ARIMA)和季节性自回归综合移动平均(SARIMA)进行预测。我们从经验上证明了为什么SARIMA是最好的模型,为什么前四个模型在预测风速时是不充分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Analysis and Forecasting of Wind Speed
Energy plays a vital role in urbanization and industrialization. Wind energy is highly valuable and accurate forecasts can help determine the best locations to set up windmills. Using a dataset comprising wind speeds from 15 years (2000–2014) within two locations of Rajasthan, namely Jaipur and Jaisalmer, we present a detailed statistical analysis including distribution analysis and forecasting using Moving Average (MA), Auto-Regressive (AR), Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). We show empirically why SARIMA is the best model and why the former four models are inadequate when it comes to forecasting wind speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信