使用低功耗蓝牙协议的超声波飞行时间定位

A. Comuniello, A. D. Angelis, G. D. Angelis, A. Moschitta
{"title":"使用低功耗蓝牙协议的超声波飞行时间定位","authors":"A. Comuniello, A. D. Angelis, G. D. Angelis, A. Moschitta","doi":"10.1109/IWMN.2019.8805003","DOIUrl":null,"url":null,"abstract":"In this paper, application of the Bluetooth Low Energy (BLE) protocol is investigated, with the aim of achieving time-synchronization for Time of flight (ToF) measurements-based positioning. The proposed approach may provide a competitive solution for portable and wearable devices, medical devices, home automation systems, and sensor-based low-power systems for the Internet of Things (IoT). A simulation model was implemented for a 2D scenario using ToF measurements, considering a delay model and simulating an Additive White Gaussian Noise (AWGN) channel. The communication latencies were realistically modeled, using a dataset of measurements collected from a real device. The results show an achievable positioning accuracy of about 1 mm, significantly improving with respect to an unsynchronized Time Difference of Arrival (TDoA) positioning system, supervised using a BLE protocol [1]. The results demonstrate the feasibility of accurate and low-cost positioning systems, based on ToF measurements on ultrasound transmissions and triggered by BLE RF transmissions.","PeriodicalId":272577,"journal":{"name":"2019 IEEE International Symposium on Measurements & Networking (M&N)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultrasound Time of Flight based positioning using the Bluetooth Low Energy protocol\",\"authors\":\"A. Comuniello, A. D. Angelis, G. D. Angelis, A. Moschitta\",\"doi\":\"10.1109/IWMN.2019.8805003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, application of the Bluetooth Low Energy (BLE) protocol is investigated, with the aim of achieving time-synchronization for Time of flight (ToF) measurements-based positioning. The proposed approach may provide a competitive solution for portable and wearable devices, medical devices, home automation systems, and sensor-based low-power systems for the Internet of Things (IoT). A simulation model was implemented for a 2D scenario using ToF measurements, considering a delay model and simulating an Additive White Gaussian Noise (AWGN) channel. The communication latencies were realistically modeled, using a dataset of measurements collected from a real device. The results show an achievable positioning accuracy of about 1 mm, significantly improving with respect to an unsynchronized Time Difference of Arrival (TDoA) positioning system, supervised using a BLE protocol [1]. The results demonstrate the feasibility of accurate and low-cost positioning systems, based on ToF measurements on ultrasound transmissions and triggered by BLE RF transmissions.\",\"PeriodicalId\":272577,\"journal\":{\"name\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2019.8805003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2019.8805003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了蓝牙低功耗(BLE)协议的应用,目的是实现基于飞行时间(ToF)测量的定位时间同步。所提出的方法可能为便携式和可穿戴设备、医疗设备、家庭自动化系统和基于传感器的物联网低功耗系统提供有竞争力的解决方案。利用ToF测量实现了二维场景的仿真模型,考虑了延迟模型并模拟了加性高斯白噪声(AWGN)信道。使用从真实设备收集的测量数据集,对通信延迟进行了实际建模。结果表明,相对于使用BLE协议进行监督的非同步到达时差(TDoA)定位系统,该方法可实现约1 mm的定位精度,显著提高[1]。结果表明,基于超声传输的ToF测量,并由BLE射频传输触发的精确和低成本定位系统是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound Time of Flight based positioning using the Bluetooth Low Energy protocol
In this paper, application of the Bluetooth Low Energy (BLE) protocol is investigated, with the aim of achieving time-synchronization for Time of flight (ToF) measurements-based positioning. The proposed approach may provide a competitive solution for portable and wearable devices, medical devices, home automation systems, and sensor-based low-power systems for the Internet of Things (IoT). A simulation model was implemented for a 2D scenario using ToF measurements, considering a delay model and simulating an Additive White Gaussian Noise (AWGN) channel. The communication latencies were realistically modeled, using a dataset of measurements collected from a real device. The results show an achievable positioning accuracy of about 1 mm, significantly improving with respect to an unsynchronized Time Difference of Arrival (TDoA) positioning system, supervised using a BLE protocol [1]. The results demonstrate the feasibility of accurate and low-cost positioning systems, based on ToF measurements on ultrasound transmissions and triggered by BLE RF transmissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信