{"title":"一个超平面约束定理及其在理想约化中的应用","authors":"G. Caviglia","doi":"10.1090/bproc/103","DOIUrl":null,"url":null,"abstract":"Green’s general hyperplane restriction theorem gives a sharp upper bound for the Hilbert function of a standard graded algebra over an infinite field \n\n \n K\n K\n \n\n modulo a general linear form. We strengthen Green’s result by showing that the linear forms that do not satisfy such estimate belong to a finite union of proper linear spaces. As an application we give a method to derive variations of the Eakin-Sathaye theorem on reductions. In particular, we recover and extend results by O’Carroll on the Eakin-Sathaye theorem for complete and joint reductions.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hyperplane restriction theorem and applications to reductions of ideals\",\"authors\":\"G. Caviglia\",\"doi\":\"10.1090/bproc/103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green’s general hyperplane restriction theorem gives a sharp upper bound for the Hilbert function of a standard graded algebra over an infinite field \\n\\n \\n K\\n K\\n \\n\\n modulo a general linear form. We strengthen Green’s result by showing that the linear forms that do not satisfy such estimate belong to a finite union of proper linear spaces. As an application we give a method to derive variations of the Eakin-Sathaye theorem on reductions. In particular, we recover and extend results by O’Carroll on the Eakin-Sathaye theorem for complete and joint reductions.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hyperplane restriction theorem and applications to reductions of ideals
Green’s general hyperplane restriction theorem gives a sharp upper bound for the Hilbert function of a standard graded algebra over an infinite field
K
K
modulo a general linear form. We strengthen Green’s result by showing that the linear forms that do not satisfy such estimate belong to a finite union of proper linear spaces. As an application we give a method to derive variations of the Eakin-Sathaye theorem on reductions. In particular, we recover and extend results by O’Carroll on the Eakin-Sathaye theorem for complete and joint reductions.