一个超平面约束定理及其在理想约化中的应用

G. Caviglia
{"title":"一个超平面约束定理及其在理想约化中的应用","authors":"G. Caviglia","doi":"10.1090/bproc/103","DOIUrl":null,"url":null,"abstract":"Green’s general hyperplane restriction theorem gives a sharp upper bound for the Hilbert function of a standard graded algebra over an infinite field \n\n \n K\n K\n \n\n modulo a general linear form. We strengthen Green’s result by showing that the linear forms that do not satisfy such estimate belong to a finite union of proper linear spaces. As an application we give a method to derive variations of the Eakin-Sathaye theorem on reductions. In particular, we recover and extend results by O’Carroll on the Eakin-Sathaye theorem for complete and joint reductions.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hyperplane restriction theorem and applications to reductions of ideals\",\"authors\":\"G. Caviglia\",\"doi\":\"10.1090/bproc/103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green’s general hyperplane restriction theorem gives a sharp upper bound for the Hilbert function of a standard graded algebra over an infinite field \\n\\n \\n K\\n K\\n \\n\\n modulo a general linear form. We strengthen Green’s result by showing that the linear forms that do not satisfy such estimate belong to a finite union of proper linear spaces. As an application we give a method to derive variations of the Eakin-Sathaye theorem on reductions. In particular, we recover and extend results by O’Carroll on the Eakin-Sathaye theorem for complete and joint reductions.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Green的一般超平面限制定理给出了无限域K K模一般线性形式上标准梯度代数的Hilbert函数的一个明显的上界。通过证明不满足这种估计的线性形式属于固有线性空间的有限并,我们加强了Green的结果。作为应用,我们给出了关于约简的Eakin-Sathaye定理的一种推导方法。特别地,我们恢复和推广了O’carroll关于Eakin-Sathaye定理的完全和联合约简结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hyperplane restriction theorem and applications to reductions of ideals
Green’s general hyperplane restriction theorem gives a sharp upper bound for the Hilbert function of a standard graded algebra over an infinite field K K modulo a general linear form. We strengthen Green’s result by showing that the linear forms that do not satisfy such estimate belong to a finite union of proper linear spaces. As an application we give a method to derive variations of the Eakin-Sathaye theorem on reductions. In particular, we recover and extend results by O’Carroll on the Eakin-Sathaye theorem for complete and joint reductions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信