泰国曼谷太阳辐照度聚类的谐波极值学习机的实现

Sarunyoo Boriratrit, R. Chatthaworn
{"title":"泰国曼谷太阳辐照度聚类的谐波极值学习机的实现","authors":"Sarunyoo Boriratrit, R. Chatthaworn","doi":"10.1109/CPEEE56777.2023.10217494","DOIUrl":null,"url":null,"abstract":"Solar irradiance is renewable energy that can quickly produce energy for households and industries. On each day and event, the solar irradiance can be varied due to the change in weather. The solar irradiance clustering can evaluate the appropriate generation pattern of a solar photovoltaic system for analyzing daily energy generation. Therefore, this paper proposes a novel clustering method to evaluate the appropriate cluster of solar irradiance generation by utilizing the Harmonic Extreme Learning Machine model to improve the performance of solar irradiance analysis and management. The experimental results showed that the Harmonic Extreme Learning Machine model had given the minimum total sum of distances between the centroid cluster and the represented data. The plot of the result is evident for explaining and interpreting the behavior of solar irradiance data and managing the data to the appropriate cluster.","PeriodicalId":364883,"journal":{"name":"2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of the Harmonic Extreme Learning Machine for Clustering the Solar Irradiance in Bangkok, Thailand\",\"authors\":\"Sarunyoo Boriratrit, R. Chatthaworn\",\"doi\":\"10.1109/CPEEE56777.2023.10217494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar irradiance is renewable energy that can quickly produce energy for households and industries. On each day and event, the solar irradiance can be varied due to the change in weather. The solar irradiance clustering can evaluate the appropriate generation pattern of a solar photovoltaic system for analyzing daily energy generation. Therefore, this paper proposes a novel clustering method to evaluate the appropriate cluster of solar irradiance generation by utilizing the Harmonic Extreme Learning Machine model to improve the performance of solar irradiance analysis and management. The experimental results showed that the Harmonic Extreme Learning Machine model had given the minimum total sum of distances between the centroid cluster and the represented data. The plot of the result is evident for explaining and interpreting the behavior of solar irradiance data and managing the data to the appropriate cluster.\",\"PeriodicalId\":364883,\"journal\":{\"name\":\"2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPEEE56777.2023.10217494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPEEE56777.2023.10217494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳辐射是一种可再生能源,可以迅速为家庭和工业生产能源。在每一天和每一事件中,由于天气的变化,太阳辐照度会发生变化。太阳辐照度聚类可以对太阳能光伏发电系统的发电方式进行评估,从而分析系统的日发电量。因此,本文提出了一种新的聚类方法,利用谐波极限学习机模型来评估太阳辐照度产生的合适聚类,以提高太阳辐照度分析和管理的性能。实验结果表明,调和极限学习机模型给出了质心聚类与表示数据之间的最小总距离。结果的曲线图对于解释和解释太阳辐照度数据的行为和将数据管理到适当的集群是明显的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of the Harmonic Extreme Learning Machine for Clustering the Solar Irradiance in Bangkok, Thailand
Solar irradiance is renewable energy that can quickly produce energy for households and industries. On each day and event, the solar irradiance can be varied due to the change in weather. The solar irradiance clustering can evaluate the appropriate generation pattern of a solar photovoltaic system for analyzing daily energy generation. Therefore, this paper proposes a novel clustering method to evaluate the appropriate cluster of solar irradiance generation by utilizing the Harmonic Extreme Learning Machine model to improve the performance of solar irradiance analysis and management. The experimental results showed that the Harmonic Extreme Learning Machine model had given the minimum total sum of distances between the centroid cluster and the represented data. The plot of the result is evident for explaining and interpreting the behavior of solar irradiance data and managing the data to the appropriate cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信