基于嘴角识别的微笑识别系统

E. Royce, Iwan Setyawan, Ivanna K. Timotius
{"title":"基于嘴角识别的微笑识别系统","authors":"E. Royce, Iwan Setyawan, Ivanna K. Timotius","doi":"10.1109/ICITACEE.2014.7065746","DOIUrl":null,"url":null,"abstract":"Automatic smile recognition plays an important part in several intelligent image processing systems. This paper presents an automatic smile detection system based on lip corners identification. Two different corner detection algorithms are used in this paper to identify lip corners, i.e., the Harris corner detection and the FAST corner detection. The proposed system is tested using our VISiO smiling face database. Our results show that the Harris corner detector yields the best result with 77.5% accuracy while the FAST corner detector gives 72.5% accuracy. However, these results depend on the method of of determining pavg (the average lip corner position during the training phase).","PeriodicalId":404830,"journal":{"name":"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smile recognition system based on lip corners identification\",\"authors\":\"E. Royce, Iwan Setyawan, Ivanna K. Timotius\",\"doi\":\"10.1109/ICITACEE.2014.7065746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic smile recognition plays an important part in several intelligent image processing systems. This paper presents an automatic smile detection system based on lip corners identification. Two different corner detection algorithms are used in this paper to identify lip corners, i.e., the Harris corner detection and the FAST corner detection. The proposed system is tested using our VISiO smiling face database. Our results show that the Harris corner detector yields the best result with 77.5% accuracy while the FAST corner detector gives 72.5% accuracy. However, these results depend on the method of of determining pavg (the average lip corner position during the training phase).\",\"PeriodicalId\":404830,\"journal\":{\"name\":\"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITACEE.2014.7065746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITACEE.2014.7065746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动微笑识别在许多智能图像处理系统中起着重要的作用。提出了一种基于唇角识别的微笑自动检测系统。本文使用了两种不同的角点检测算法来识别唇角,即Harris角点检测和FAST角点检测。利用VISiO笑脸数据库对该系统进行了测试。结果表明,Harris角点检测器的准确率为77.5%,FAST角点检测器的准确率为72.5%。然而,这些结果依赖于确定pavg(训练阶段的平均唇角位置)的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smile recognition system based on lip corners identification
Automatic smile recognition plays an important part in several intelligent image processing systems. This paper presents an automatic smile detection system based on lip corners identification. Two different corner detection algorithms are used in this paper to identify lip corners, i.e., the Harris corner detection and the FAST corner detection. The proposed system is tested using our VISiO smiling face database. Our results show that the Harris corner detector yields the best result with 77.5% accuracy while the FAST corner detector gives 72.5% accuracy. However, these results depend on the method of of determining pavg (the average lip corner position during the training phase).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信