高速反平方根

M. Schulte, K. Wires
{"title":"高速反平方根","authors":"M. Schulte, K. Wires","doi":"10.1109/ARITH.1999.762837","DOIUrl":null,"url":null,"abstract":"Inverse square roots are used in several digital signal processing, multimedia, and scientific computing applications. This paper presents a high-speed method for computing inverse square roots. This method uses a table lookup, operand modification, and multiplication to obtain an initial approximation to the inverse square root. This is followed by a modified Newton-Raphson iteration, consisting of one square, one multiply-complement, and one multiply-add operation. The initial approximation and Newton-Raphson iteration employ specialized hardware to reduce the delay, area, and power dissipation. Application of this method is illustrated through the design of an inverse square root unit operands in the IEEE single precision format. An implementation of this unit with a 4-layer metal, 2.5 Volt, 0.25 micron CMOS standard cell library has a cycle rime of 6.7 ns, an area of 0.41 mm/sup 2/, a latency of five cycles, and a throughput of one result per cycle.","PeriodicalId":434169,"journal":{"name":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"High-speed inverse square roots\",\"authors\":\"M. Schulte, K. Wires\",\"doi\":\"10.1109/ARITH.1999.762837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse square roots are used in several digital signal processing, multimedia, and scientific computing applications. This paper presents a high-speed method for computing inverse square roots. This method uses a table lookup, operand modification, and multiplication to obtain an initial approximation to the inverse square root. This is followed by a modified Newton-Raphson iteration, consisting of one square, one multiply-complement, and one multiply-add operation. The initial approximation and Newton-Raphson iteration employ specialized hardware to reduce the delay, area, and power dissipation. Application of this method is illustrated through the design of an inverse square root unit operands in the IEEE single precision format. An implementation of this unit with a 4-layer metal, 2.5 Volt, 0.25 micron CMOS standard cell library has a cycle rime of 6.7 ns, an area of 0.41 mm/sup 2/, a latency of five cycles, and a throughput of one result per cycle.\",\"PeriodicalId\":434169,\"journal\":{\"name\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1999.762837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1999.762837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

平方根反比在许多数字信号处理、多媒体和科学计算应用中都有应用。本文提出了一种高速计算平方根反比的方法。此方法使用表查找、操作数修改和乘法来获得反平方根的初始近似值。接下来是一个改进的Newton-Raphson迭代,由一个平方、一个乘法补和一个乘法加操作组成。初始逼近和牛顿-拉夫森迭代采用专门的硬件来减少延迟、面积和功耗。通过设计一个IEEE单精度格式的反平方根单位操作数来说明该方法的应用。采用4层金属、2.5伏、0.25微米CMOS标准电池库实现该单元,周期时间为6.7 ns,面积为0.41 mm/sup /,延迟为5个周期,每个周期的吞吐量为一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-speed inverse square roots
Inverse square roots are used in several digital signal processing, multimedia, and scientific computing applications. This paper presents a high-speed method for computing inverse square roots. This method uses a table lookup, operand modification, and multiplication to obtain an initial approximation to the inverse square root. This is followed by a modified Newton-Raphson iteration, consisting of one square, one multiply-complement, and one multiply-add operation. The initial approximation and Newton-Raphson iteration employ specialized hardware to reduce the delay, area, and power dissipation. Application of this method is illustrated through the design of an inverse square root unit operands in the IEEE single precision format. An implementation of this unit with a 4-layer metal, 2.5 Volt, 0.25 micron CMOS standard cell library has a cycle rime of 6.7 ns, an area of 0.41 mm/sup 2/, a latency of five cycles, and a throughput of one result per cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信