基于非下采样轮廓波的合成孔径雷达图像分割

Zhang Jian, Chen Xiaowei
{"title":"基于非下采样轮廓波的合成孔径雷达图像分割","authors":"Zhang Jian, Chen Xiaowei","doi":"10.1109/ICSSEM.2012.6340847","DOIUrl":null,"url":null,"abstract":"It is well known that the Synthetic Aperture Radar(SAR) images are abundant of directional and texture information, which is very useful for segmentation. Contourlet is a geometric multiscale tool that is based on multiscale filters and directional filter banks. It not only inherits the multiscale characteristics of dimensionality-inseparable wavelets, but also has the flexible multi-directional characteristic. In this paper, we developed a new non-subsampled contourlet transform (NSCT) and gray level co-occurrence matrix (GLCM) based image segmentation method for SAR image segmentation. For the redundant and shift-invariant property of the NSCT, and the statistical texture features extracted by GLCM, the proposed method can present accurate segmentation result for SAR images.","PeriodicalId":115037,"journal":{"name":"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-subsampled contourlets based Synthetic Aperture Radar images segmentation\",\"authors\":\"Zhang Jian, Chen Xiaowei\",\"doi\":\"10.1109/ICSSEM.2012.6340847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the Synthetic Aperture Radar(SAR) images are abundant of directional and texture information, which is very useful for segmentation. Contourlet is a geometric multiscale tool that is based on multiscale filters and directional filter banks. It not only inherits the multiscale characteristics of dimensionality-inseparable wavelets, but also has the flexible multi-directional characteristic. In this paper, we developed a new non-subsampled contourlet transform (NSCT) and gray level co-occurrence matrix (GLCM) based image segmentation method for SAR image segmentation. For the redundant and shift-invariant property of the NSCT, and the statistical texture features extracted by GLCM, the proposed method can present accurate segmentation result for SAR images.\",\"PeriodicalId\":115037,\"journal\":{\"name\":\"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSEM.2012.6340847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2012.6340847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,合成孔径雷达(SAR)图像具有丰富的方向和纹理信息,这些信息对图像分割非常有用。Contourlet是一种基于多尺度滤波器和方向滤波器组的几何多尺度工具。它既继承了小波维不可分的多尺度特征,又具有灵活的多方向性。本文提出了一种新的基于非下采样轮廓波变换(NSCT)和灰度共生矩阵(GLCM)的SAR图像分割方法。基于NSCT的冗余性和平移不变性,结合GLCM提取的统计纹理特征,该方法能够对SAR图像进行准确的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-subsampled contourlets based Synthetic Aperture Radar images segmentation
It is well known that the Synthetic Aperture Radar(SAR) images are abundant of directional and texture information, which is very useful for segmentation. Contourlet is a geometric multiscale tool that is based on multiscale filters and directional filter banks. It not only inherits the multiscale characteristics of dimensionality-inseparable wavelets, but also has the flexible multi-directional characteristic. In this paper, we developed a new non-subsampled contourlet transform (NSCT) and gray level co-occurrence matrix (GLCM) based image segmentation method for SAR image segmentation. For the redundant and shift-invariant property of the NSCT, and the statistical texture features extracted by GLCM, the proposed method can present accurate segmentation result for SAR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信