{"title":"LMgr:一个具有动态拓扑更新和弯曲感知最优路径搜索的低内存全局路由器","authors":"Jingwei Lu, Chiu-Wing Sham","doi":"10.1109/ISQED.2013.6523615","DOIUrl":null,"url":null,"abstract":"Global routing remains a fundamental physical design problem. We observe that large circuits cause high memory cost1, and modern routers could not optimize the routing path of each two-pin subnet. In this paper, (1) we develop a dynamic topology update technique to improve routing quality (2) we improve the memory efficiency with negligible performance overhead (3) we prove the non-optimality of traditional maze routing algorithm (4) we develop a novel routing algorithm and prove that it is optimum (5) we design a new global router, LMgr, which integrates all the above techniques. The experimental results on the ISPD 2008 benchmark suite show that LMgr could outperform NTHU2.0, NTUgr, FastRoute3.0 and FGR1.1 on solution quality in 13 out of 16 benchmarks and peak memory cost in 15 out of 16 benchmarks, the average memory reduction over all the benchmarks is up to 77%.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"LMgr: A low-M emory global router with dynamic topology update and bending-aware optimum path search\",\"authors\":\"Jingwei Lu, Chiu-Wing Sham\",\"doi\":\"10.1109/ISQED.2013.6523615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global routing remains a fundamental physical design problem. We observe that large circuits cause high memory cost1, and modern routers could not optimize the routing path of each two-pin subnet. In this paper, (1) we develop a dynamic topology update technique to improve routing quality (2) we improve the memory efficiency with negligible performance overhead (3) we prove the non-optimality of traditional maze routing algorithm (4) we develop a novel routing algorithm and prove that it is optimum (5) we design a new global router, LMgr, which integrates all the above techniques. The experimental results on the ISPD 2008 benchmark suite show that LMgr could outperform NTHU2.0, NTUgr, FastRoute3.0 and FGR1.1 on solution quality in 13 out of 16 benchmarks and peak memory cost in 15 out of 16 benchmarks, the average memory reduction over all the benchmarks is up to 77%.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LMgr: A low-M emory global router with dynamic topology update and bending-aware optimum path search
Global routing remains a fundamental physical design problem. We observe that large circuits cause high memory cost1, and modern routers could not optimize the routing path of each two-pin subnet. In this paper, (1) we develop a dynamic topology update technique to improve routing quality (2) we improve the memory efficiency with negligible performance overhead (3) we prove the non-optimality of traditional maze routing algorithm (4) we develop a novel routing algorithm and prove that it is optimum (5) we design a new global router, LMgr, which integrates all the above techniques. The experimental results on the ISPD 2008 benchmark suite show that LMgr could outperform NTHU2.0, NTUgr, FastRoute3.0 and FGR1.1 on solution quality in 13 out of 16 benchmarks and peak memory cost in 15 out of 16 benchmarks, the average memory reduction over all the benchmarks is up to 77%.