{"title":"Ran$Net:一种基于缓存监控和深度学习的反勒索软件方法","authors":"Xiang Zhang, Ziyue Zhang, Ruyi Ding, Gongye Cheng, A. Ding, Yunsi Fei","doi":"10.1145/3526241.3530830","DOIUrl":null,"url":null,"abstract":"Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ran$Net: An Anti-Ransomware Methodology based on Cache Monitoring and Deep Learning\",\"authors\":\"Xiang Zhang, Ziyue Zhang, Ruyi Ding, Gongye Cheng, A. Ding, Yunsi Fei\",\"doi\":\"10.1145/3526241.3530830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ran$Net: An Anti-Ransomware Methodology based on Cache Monitoring and Deep Learning
Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key.