Ran$Net:一种基于缓存监控和深度学习的反勒索软件方法

Xiang Zhang, Ziyue Zhang, Ruyi Ding, Gongye Cheng, A. Ding, Yunsi Fei
{"title":"Ran$Net:一种基于缓存监控和深度学习的反勒索软件方法","authors":"Xiang Zhang, Ziyue Zhang, Ruyi Ding, Gongye Cheng, A. Ding, Yunsi Fei","doi":"10.1145/3526241.3530830","DOIUrl":null,"url":null,"abstract":"Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ran$Net: An Anti-Ransomware Methodology based on Cache Monitoring and Deep Learning\",\"authors\":\"Xiang Zhang, Ziyue Zhang, Ruyi Ding, Gongye Cheng, A. Ding, Yunsi Fei\",\"doi\":\"10.1145/3526241.3530830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

勒索软件已成为网络空间的严重威胁。现有的基于软件模式的恶意软件检测器是特定于某些勒索软件的,可能无法捕获新的变体。认识到勒索软件的常见基本行为-使用本地加密软件进行恶意加密,从而在受害者机器的缓存上留下足迹,本工作提出了一种基于硬件活动的反勒索软件方法Ran$Net。它包括一个被动缓存监视器,用于记录可疑的缓存活动,以及一个后续的非概要深度学习分析策略,用于从监视器生成的定时跟踪中检索秘密加密密钥。我们实现了首个此类工具来打击开源勒索软件并成功恢复密钥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ran$Net: An Anti-Ransomware Methodology based on Cache Monitoring and Deep Learning
Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信