低剂量CT图像去噪与肺结节识别

Zheng Chen, Zhengping Yong
{"title":"低剂量CT图像去噪与肺结节识别","authors":"Zheng Chen, Zhengping Yong","doi":"10.1145/3365245.3365252","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel image denoising and pulmonary nodule identification method for Low-Dose CT images. Due to the decrease of the X-ray dose, LDCT images suffered from high noise and low qualities. We employ a deep convolutional neural network to not only denoise but also extract noise-free features from the noisy LDCT images. Next, these features are used to reconstruct the spatial relationship between CT slices, and we use 3D CNN to extract the spatial features. These features finally fed into a fully connected network to get the nodule identification result. The experimental results on the LUNA16 dataset show that, compared with the current deep learning algorithms, the proposed network model achieves a better sensitivity of 0.809, 0.913 and 0.945 at 1/8, 1 and 8 false positives per scan, respectively, and a higher CPM score of 0.894.","PeriodicalId":151102,"journal":{"name":"Proceedings of the 2019 2nd International Conference on Sensors, Signal and Image Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-Dose CT Image Denoising and Pulmonary Nodule Identification\",\"authors\":\"Zheng Chen, Zhengping Yong\",\"doi\":\"10.1145/3365245.3365252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a novel image denoising and pulmonary nodule identification method for Low-Dose CT images. Due to the decrease of the X-ray dose, LDCT images suffered from high noise and low qualities. We employ a deep convolutional neural network to not only denoise but also extract noise-free features from the noisy LDCT images. Next, these features are used to reconstruct the spatial relationship between CT slices, and we use 3D CNN to extract the spatial features. These features finally fed into a fully connected network to get the nodule identification result. The experimental results on the LUNA16 dataset show that, compared with the current deep learning algorithms, the proposed network model achieves a better sensitivity of 0.809, 0.913 and 0.945 at 1/8, 1 and 8 false positives per scan, respectively, and a higher CPM score of 0.894.\",\"PeriodicalId\":151102,\"journal\":{\"name\":\"Proceedings of the 2019 2nd International Conference on Sensors, Signal and Image Processing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 2nd International Conference on Sensors, Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365245.3365252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 2nd International Conference on Sensors, Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365245.3365252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的低剂量CT图像去噪与肺结节识别方法。由于x射线剂量的降低,LDCT图像存在高噪声、低质量的问题。我们采用深度卷积神经网络对LDCT图像进行去噪,并提取无噪特征。接下来,利用这些特征重构CT切片之间的空间关系,并使用3D CNN提取空间特征。最后将这些特征输入到一个全连通网络中,得到结节识别结果。在LUNA16数据集上的实验结果表明,与现有的深度学习算法相比,本文提出的网络模型在每次扫描1/8次、1次和8次误报时的灵敏度分别为0.809、0.913和0.945,CPM得分为0.894。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Dose CT Image Denoising and Pulmonary Nodule Identification
In this paper, we describe a novel image denoising and pulmonary nodule identification method for Low-Dose CT images. Due to the decrease of the X-ray dose, LDCT images suffered from high noise and low qualities. We employ a deep convolutional neural network to not only denoise but also extract noise-free features from the noisy LDCT images. Next, these features are used to reconstruct the spatial relationship between CT slices, and we use 3D CNN to extract the spatial features. These features finally fed into a fully connected network to get the nodule identification result. The experimental results on the LUNA16 dataset show that, compared with the current deep learning algorithms, the proposed network model achieves a better sensitivity of 0.809, 0.913 and 0.945 at 1/8, 1 and 8 false positives per scan, respectively, and a higher CPM score of 0.894.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信