{"title":"石膏/脱硫粉煤灰/活性页岩炭/ Şırnak复合颗粒生物炭对森林火灾风险的抑制作用","authors":"Y. Tosun","doi":"10.5772/intechopen.92592","DOIUrl":null,"url":null,"abstract":"Chemical hydrate analysis using gypsum and lime solution was carried out for dehydration of ashes in heavy heat and fire conditions. The 20 – 50 g pasted popped char samples soaked at higher temperatures of 750 and 500°C showed higher dehydration and heat sorption capacities and became increasingly nonlinear isotherm due to loss of ash surface on granule sites and dehydrogenation. However, this sorption of popped char was slower than other materials such as expanded clay, because microwave permittivity was attributed to their pore differences in solute molarities and sorption mechanisms. Inhibition of hydrate and CO 2 source cooling flame was tested in our research to avoid the spread of forest fires into live bushes and forest areas due to distribution of hot flame of wind. The prospects were designed for construction of materials, such as bubbled gas, for arresting house fires. The similar materials can be produced using bio-waste materials and byproducts of construction wastes or forest soil filling. In this study, porous limestone and porous anhydrite metalized stone absorbed the bubbled balls with microwave melted recycling anhydrite metalized powders covering the surface to avoid combustion. In this investigation, the recrystallized gypsum and powdered limestone were reroasted in microwave to melt anhydrite with the porous cores and basalt granules and even the bubbling of anhydrite metalized granules. The fillers finished was used for fire arrestor powder and soil, absorbing heat of fire which were determined as metalized coal carbon-rich forest soil were investigated for arrestor on floor test and deterioration of soil and heat sorption were calculated, respec-tively. For this purpose, heat resistance, heat sorption, and soil combustion experiments were conducted. As defined, the test results were conducted by comparing metal powders with high heat. The production flow sheet and advantageous process parameters using recycling coal shale and anhydrite gypsum","PeriodicalId":442283,"journal":{"name":"Advances in Forest Management under Global Change","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gypsum/Desulfurization Fly Ash/Activated Shale Char/Claystone of Şırnak with Popped Biochar Composite Granules as Fire Inhibitor for Fire Hazard Risk in Forest Management\",\"authors\":\"Y. Tosun\",\"doi\":\"10.5772/intechopen.92592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical hydrate analysis using gypsum and lime solution was carried out for dehydration of ashes in heavy heat and fire conditions. The 20 – 50 g pasted popped char samples soaked at higher temperatures of 750 and 500°C showed higher dehydration and heat sorption capacities and became increasingly nonlinear isotherm due to loss of ash surface on granule sites and dehydrogenation. However, this sorption of popped char was slower than other materials such as expanded clay, because microwave permittivity was attributed to their pore differences in solute molarities and sorption mechanisms. Inhibition of hydrate and CO 2 source cooling flame was tested in our research to avoid the spread of forest fires into live bushes and forest areas due to distribution of hot flame of wind. The prospects were designed for construction of materials, such as bubbled gas, for arresting house fires. The similar materials can be produced using bio-waste materials and byproducts of construction wastes or forest soil filling. In this study, porous limestone and porous anhydrite metalized stone absorbed the bubbled balls with microwave melted recycling anhydrite metalized powders covering the surface to avoid combustion. In this investigation, the recrystallized gypsum and powdered limestone were reroasted in microwave to melt anhydrite with the porous cores and basalt granules and even the bubbling of anhydrite metalized granules. The fillers finished was used for fire arrestor powder and soil, absorbing heat of fire which were determined as metalized coal carbon-rich forest soil were investigated for arrestor on floor test and deterioration of soil and heat sorption were calculated, respec-tively. For this purpose, heat resistance, heat sorption, and soil combustion experiments were conducted. As defined, the test results were conducted by comparing metal powders with high heat. The production flow sheet and advantageous process parameters using recycling coal shale and anhydrite gypsum\",\"PeriodicalId\":442283,\"journal\":{\"name\":\"Advances in Forest Management under Global Change\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Forest Management under Global Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.92592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Forest Management under Global Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gypsum/Desulfurization Fly Ash/Activated Shale Char/Claystone of Şırnak with Popped Biochar Composite Granules as Fire Inhibitor for Fire Hazard Risk in Forest Management
Chemical hydrate analysis using gypsum and lime solution was carried out for dehydration of ashes in heavy heat and fire conditions. The 20 – 50 g pasted popped char samples soaked at higher temperatures of 750 and 500°C showed higher dehydration and heat sorption capacities and became increasingly nonlinear isotherm due to loss of ash surface on granule sites and dehydrogenation. However, this sorption of popped char was slower than other materials such as expanded clay, because microwave permittivity was attributed to their pore differences in solute molarities and sorption mechanisms. Inhibition of hydrate and CO 2 source cooling flame was tested in our research to avoid the spread of forest fires into live bushes and forest areas due to distribution of hot flame of wind. The prospects were designed for construction of materials, such as bubbled gas, for arresting house fires. The similar materials can be produced using bio-waste materials and byproducts of construction wastes or forest soil filling. In this study, porous limestone and porous anhydrite metalized stone absorbed the bubbled balls with microwave melted recycling anhydrite metalized powders covering the surface to avoid combustion. In this investigation, the recrystallized gypsum and powdered limestone were reroasted in microwave to melt anhydrite with the porous cores and basalt granules and even the bubbling of anhydrite metalized granules. The fillers finished was used for fire arrestor powder and soil, absorbing heat of fire which were determined as metalized coal carbon-rich forest soil were investigated for arrestor on floor test and deterioration of soil and heat sorption were calculated, respec-tively. For this purpose, heat resistance, heat sorption, and soil combustion experiments were conducted. As defined, the test results were conducted by comparing metal powders with high heat. The production flow sheet and advantageous process parameters using recycling coal shale and anhydrite gypsum