Elena Lisova, E. Uhlemann, W. Steiner, J. Åkerberg, M. Bjorkman
{"title":"博弈论在ieee1588安全时钟同步中的应用","authors":"Elena Lisova, E. Uhlemann, W. Steiner, J. Åkerberg, M. Bjorkman","doi":"10.1109/ISPCS.2016.7579509","DOIUrl":null,"url":null,"abstract":"Industrial applications usually have real-time requirements or high precision timing demands. For such applications, clock synchronization is one of the main assets that needs to be protected against malicious attacks. To provide sufficient accuracy for distributed time-critical applications, appropriate techniques for preventing or mitigating delay attacks that breach clock synchronization are needed. In this paper, we apply game theory to investigate possible strategies of an adversary, performing attacks targeting clock synchronization on the one hand and a network monitor, aiming to detect anomalies introduced by the adversary on the other. We investigate the interconnection of payoffs for both sides and propose the quarantine mode as a mitigation technique. Delay attacks with constant, linearly increasing, and randomly introduced delays are considered, and we show how the adversary strategy can be estimated by evaluating the detection coefficient, giving the network monitor the possibility to deploy appropriate protection techniques.","PeriodicalId":284489,"journal":{"name":"2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Game theory applied to secure clock synchronization with IEEE 1588\",\"authors\":\"Elena Lisova, E. Uhlemann, W. Steiner, J. Åkerberg, M. Bjorkman\",\"doi\":\"10.1109/ISPCS.2016.7579509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial applications usually have real-time requirements or high precision timing demands. For such applications, clock synchronization is one of the main assets that needs to be protected against malicious attacks. To provide sufficient accuracy for distributed time-critical applications, appropriate techniques for preventing or mitigating delay attacks that breach clock synchronization are needed. In this paper, we apply game theory to investigate possible strategies of an adversary, performing attacks targeting clock synchronization on the one hand and a network monitor, aiming to detect anomalies introduced by the adversary on the other. We investigate the interconnection of payoffs for both sides and propose the quarantine mode as a mitigation technique. Delay attacks with constant, linearly increasing, and randomly introduced delays are considered, and we show how the adversary strategy can be estimated by evaluating the detection coefficient, giving the network monitor the possibility to deploy appropriate protection techniques.\",\"PeriodicalId\":284489,\"journal\":{\"name\":\"2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCS.2016.7579509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCS.2016.7579509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Game theory applied to secure clock synchronization with IEEE 1588
Industrial applications usually have real-time requirements or high precision timing demands. For such applications, clock synchronization is one of the main assets that needs to be protected against malicious attacks. To provide sufficient accuracy for distributed time-critical applications, appropriate techniques for preventing or mitigating delay attacks that breach clock synchronization are needed. In this paper, we apply game theory to investigate possible strategies of an adversary, performing attacks targeting clock synchronization on the one hand and a network monitor, aiming to detect anomalies introduced by the adversary on the other. We investigate the interconnection of payoffs for both sides and propose the quarantine mode as a mitigation technique. Delay attacks with constant, linearly increasing, and randomly introduced delays are considered, and we show how the adversary strategy can be estimated by evaluating the detection coefficient, giving the network monitor the possibility to deploy appropriate protection techniques.