Xiang Li, Linsheng Wu, Yao-ping Zhang, J. Mao, Xiaojie Li
{"title":"基于嵌入掺杂多层石墨烯带(ID-MGR)的可调谐太赫兹谐振器","authors":"Xiang Li, Linsheng Wu, Yao-ping Zhang, J. Mao, Xiaojie Li","doi":"10.1109/IMWS-AMP.2016.7588325","DOIUrl":null,"url":null,"abstract":"Graphene has been proved to be a promising candidate nanomaterial for tunable electronics. In this paper, a novel tunable terahertz resonator is proposed based on an electrically biased intercalation doped-multilayer graphene ribbon (ID-MGR). The induced self-heating effect is taken into account. Then, the equivalent circuit parameters are predicted. The resonant frequencies and Q-factors of the resonator are calculated with the equivalent single conductor (ESC) model. By properly selecting the geometry of the ID-MGR resonator and applying a biasing voltage of 1.0 V, a tuning ratio up to 21.2% can be achieved with the unloaded Q-factor around 25 for the resonant frequency around 1 THz.","PeriodicalId":132755,"journal":{"name":"2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tunable terahertz resonator based on intercalation doped-multilayer graphene ribbon (ID-MGR)\",\"authors\":\"Xiang Li, Linsheng Wu, Yao-ping Zhang, J. Mao, Xiaojie Li\",\"doi\":\"10.1109/IMWS-AMP.2016.7588325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene has been proved to be a promising candidate nanomaterial for tunable electronics. In this paper, a novel tunable terahertz resonator is proposed based on an electrically biased intercalation doped-multilayer graphene ribbon (ID-MGR). The induced self-heating effect is taken into account. Then, the equivalent circuit parameters are predicted. The resonant frequencies and Q-factors of the resonator are calculated with the equivalent single conductor (ESC) model. By properly selecting the geometry of the ID-MGR resonator and applying a biasing voltage of 1.0 V, a tuning ratio up to 21.2% can be achieved with the unloaded Q-factor around 25 for the resonant frequency around 1 THz.\",\"PeriodicalId\":132755,\"journal\":{\"name\":\"2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-AMP.2016.7588325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-AMP.2016.7588325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tunable terahertz resonator based on intercalation doped-multilayer graphene ribbon (ID-MGR)
Graphene has been proved to be a promising candidate nanomaterial for tunable electronics. In this paper, a novel tunable terahertz resonator is proposed based on an electrically biased intercalation doped-multilayer graphene ribbon (ID-MGR). The induced self-heating effect is taken into account. Then, the equivalent circuit parameters are predicted. The resonant frequencies and Q-factors of the resonator are calculated with the equivalent single conductor (ESC) model. By properly selecting the geometry of the ID-MGR resonator and applying a biasing voltage of 1.0 V, a tuning ratio up to 21.2% can be achieved with the unloaded Q-factor around 25 for the resonant frequency around 1 THz.