基于时空纹理不一致性测量的无参考dibr合成视频质量评估

Guangcheng Wang, Kezheng Sun, Lijuan Tang
{"title":"基于时空纹理不一致性测量的无参考dibr合成视频质量评估","authors":"Guangcheng Wang, Kezheng Sun, Lijuan Tang","doi":"10.1109/ISPACS57703.2022.10082823","DOIUrl":null,"url":null,"abstract":"The relevant applications of depth-image-based-rendering (DIBR) exist mainly in the form of video sequences. However, existing studies on the quality assessment of DIBR-synthesized views primarily focused on DIBR-synthesized images. To this end, this paper proposes a DIBR-synthesized video quality evaluation metric based on measuring spatio-temporal texture inconsistency, dubbed STTI. Specifically, STTI first extracts the texture map of each frame in the spatial domain. Then, STTI further employs the histogram of oriented optical flow to extract the dynamic variations of adjacent frames' texture information in the spatio-temporal domain. Finally, STTI calculates the cosine similarity of the histograms of oriented optical flow between the texture maps of adjacent frames to measure spatio-temporal texture inconsistency. Experimental results on the publicly available datasets show that the proposed STTI outperforms the popular image/video quality assessment methods developed for natural scene and DIBR-synthesized views.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No-Reference DIBR-Synthesized Video Quality Assessment based on Spatio-Temporal Texture Inconsistency Measurement\",\"authors\":\"Guangcheng Wang, Kezheng Sun, Lijuan Tang\",\"doi\":\"10.1109/ISPACS57703.2022.10082823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relevant applications of depth-image-based-rendering (DIBR) exist mainly in the form of video sequences. However, existing studies on the quality assessment of DIBR-synthesized views primarily focused on DIBR-synthesized images. To this end, this paper proposes a DIBR-synthesized video quality evaluation metric based on measuring spatio-temporal texture inconsistency, dubbed STTI. Specifically, STTI first extracts the texture map of each frame in the spatial domain. Then, STTI further employs the histogram of oriented optical flow to extract the dynamic variations of adjacent frames' texture information in the spatio-temporal domain. Finally, STTI calculates the cosine similarity of the histograms of oriented optical flow between the texture maps of adjacent frames to measure spatio-temporal texture inconsistency. Experimental results on the publicly available datasets show that the proposed STTI outperforms the popular image/video quality assessment methods developed for natural scene and DIBR-synthesized views.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度图像渲染的相关应用主要以视频序列的形式存在。然而,现有关于dibr合成视图质量评价的研究主要集中在dibr合成图像上。为此,本文提出了一种基于时空纹理不一致性测量的dibr合成视频质量评价指标,称为STTI。具体来说,STTI首先在空间域中提取每帧的纹理映射。然后,STTI进一步利用定向光流直方图提取相邻帧的纹理信息在时空域中的动态变化。最后,STTI计算相邻帧纹理映射间定向光流直方图的余弦相似度来衡量时空纹理不一致性。在公开数据集上的实验结果表明,所提出的STTI优于针对自然场景和dibr合成视图开发的流行图像/视频质量评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-Reference DIBR-Synthesized Video Quality Assessment based on Spatio-Temporal Texture Inconsistency Measurement
The relevant applications of depth-image-based-rendering (DIBR) exist mainly in the form of video sequences. However, existing studies on the quality assessment of DIBR-synthesized views primarily focused on DIBR-synthesized images. To this end, this paper proposes a DIBR-synthesized video quality evaluation metric based on measuring spatio-temporal texture inconsistency, dubbed STTI. Specifically, STTI first extracts the texture map of each frame in the spatial domain. Then, STTI further employs the histogram of oriented optical flow to extract the dynamic variations of adjacent frames' texture information in the spatio-temporal domain. Finally, STTI calculates the cosine similarity of the histograms of oriented optical flow between the texture maps of adjacent frames to measure spatio-temporal texture inconsistency. Experimental results on the publicly available datasets show that the proposed STTI outperforms the popular image/video quality assessment methods developed for natural scene and DIBR-synthesized views.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信