基于比例公平的容错多核实时系统调度

Stefan Kramer, J. Mottok, S. Racek
{"title":"基于比例公平的容错多核实时系统调度","authors":"Stefan Kramer, J. Mottok, S. Racek","doi":"10.1109/EITECH.2015.7162952","DOIUrl":null,"url":null,"abstract":"In this paper we present a scheduling approach for safety critical, fault tolerant, multicore real-time embedded systems. For this kind of systems, not only the correctness of a computed result but also the strict adherence to timing requirements of computation is essential to avoid any kind of damage. To react to unpredictable, arbitrary hardware faults suitable error detection mechanisms have to be applied. The caused error itself and the detection and correction have great impact on the system's timing behavior. To still keep the real-time requirements, the used scheduling algorithm has to ensure maximum flexibility to disturbances of the timing. The group of Proportionate Fair (Pfairness) multicore scheduling algorithms has been proven to create an optimal schedule in polynomial time. The contribution of this paper is a Pfair-based algorithm that uses tight coupling between the error detection mechanisms and the scheduler of the real-time operating system to establish a loop-back connection.","PeriodicalId":405923,"journal":{"name":"2015 International Conference on Electrical and Information Technologies (ICEIT)","volume":"52 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proportionate fair based multicore scheduling for fault tolerant multicore real-time systems\",\"authors\":\"Stefan Kramer, J. Mottok, S. Racek\",\"doi\":\"10.1109/EITECH.2015.7162952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a scheduling approach for safety critical, fault tolerant, multicore real-time embedded systems. For this kind of systems, not only the correctness of a computed result but also the strict adherence to timing requirements of computation is essential to avoid any kind of damage. To react to unpredictable, arbitrary hardware faults suitable error detection mechanisms have to be applied. The caused error itself and the detection and correction have great impact on the system's timing behavior. To still keep the real-time requirements, the used scheduling algorithm has to ensure maximum flexibility to disturbances of the timing. The group of Proportionate Fair (Pfairness) multicore scheduling algorithms has been proven to create an optimal schedule in polynomial time. The contribution of this paper is a Pfair-based algorithm that uses tight coupling between the error detection mechanisms and the scheduler of the real-time operating system to establish a loop-back connection.\",\"PeriodicalId\":405923,\"journal\":{\"name\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"52 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2015.7162952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2015.7162952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种安全关键、容错、多核实时嵌入式系统的调度方法。对于这类系统,不仅要保证计算结果的正确性,而且要严格遵守计算的时序要求,以避免任何形式的损坏。为了应对不可预测的、任意的硬件故障,必须应用合适的错误检测机制。引起的误差本身以及检测和校正对系统的定时行为有很大的影响。在保证实时性的前提下,所采用的调度算法必须保证对时序干扰具有最大的灵活性。一组比例公平(Pfairness)多核调度算法已被证明可以在多项式时间内创建最优调度。本文的贡献是基于pfair的算法,该算法利用错误检测机制和实时操作系统的调度程序之间的紧密耦合来建立环路连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proportionate fair based multicore scheduling for fault tolerant multicore real-time systems
In this paper we present a scheduling approach for safety critical, fault tolerant, multicore real-time embedded systems. For this kind of systems, not only the correctness of a computed result but also the strict adherence to timing requirements of computation is essential to avoid any kind of damage. To react to unpredictable, arbitrary hardware faults suitable error detection mechanisms have to be applied. The caused error itself and the detection and correction have great impact on the system's timing behavior. To still keep the real-time requirements, the used scheduling algorithm has to ensure maximum flexibility to disturbances of the timing. The group of Proportionate Fair (Pfairness) multicore scheduling algorithms has been proven to create an optimal schedule in polynomial time. The contribution of this paper is a Pfair-based algorithm that uses tight coupling between the error detection mechanisms and the scheduler of the real-time operating system to establish a loop-back connection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信