A. Voloshkin, L. Rybak, V. Skitova, A. Nozdracheva, E. Gaponenko
{"title":"在NX中利用计算机辅助设计建立Delta机械手的三维运动学模型","authors":"A. Voloshkin, L. Rybak, V. Skitova, A. Nozdracheva, E. Gaponenko","doi":"10.31776/rtcj.11103","DOIUrl":null,"url":null,"abstract":"The article discusses the design of the Delta robot, which is part of a multirobotic system for aliquoting biological fluid. The purpose of the article is to obtain a dynamic model of the Delta manipulator using 3D modeling, which will allow studying the kinematic and dynamic characteristics of the manipulator for the specified parameters. A computer-aided design (CAD) system is used for modeling. The article presents an analytical calculation of the kinematic and dynamic parameters of the Delta manipulator in the RS structure, a solution to the inverse problem is presented. The process of creating a digital calculation model in the NX Nasrtan system is described. The preliminary calculation of kinematic and dynamic parameters made it possible to set parameters in the NX Nastran system to ensure the rotation of the drive shafts of the engines in accordance with the specified trajectory of the output link. For all parts of the manipulator, the center of mass is determined and the material is assigned. Motion simulation was carried out and dependences of changes in speeds, accelerations and movements of the manipulator links were obtained to implement the required trajectory of the mobile platform. This calculation allows you to build the trajectory of the output link with a given speed, setting the rotation of the drive links of the calculated model taking into account the forces of inertia.","PeriodicalId":376940,"journal":{"name":"Robotics and Technical Cybernetics","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creation of a 3D kinematic model of the Delta manipulator using computer-aided design in NX\",\"authors\":\"A. Voloshkin, L. Rybak, V. Skitova, A. Nozdracheva, E. Gaponenko\",\"doi\":\"10.31776/rtcj.11103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the design of the Delta robot, which is part of a multirobotic system for aliquoting biological fluid. The purpose of the article is to obtain a dynamic model of the Delta manipulator using 3D modeling, which will allow studying the kinematic and dynamic characteristics of the manipulator for the specified parameters. A computer-aided design (CAD) system is used for modeling. The article presents an analytical calculation of the kinematic and dynamic parameters of the Delta manipulator in the RS structure, a solution to the inverse problem is presented. The process of creating a digital calculation model in the NX Nasrtan system is described. The preliminary calculation of kinematic and dynamic parameters made it possible to set parameters in the NX Nastran system to ensure the rotation of the drive shafts of the engines in accordance with the specified trajectory of the output link. For all parts of the manipulator, the center of mass is determined and the material is assigned. Motion simulation was carried out and dependences of changes in speeds, accelerations and movements of the manipulator links were obtained to implement the required trajectory of the mobile platform. This calculation allows you to build the trajectory of the output link with a given speed, setting the rotation of the drive links of the calculated model taking into account the forces of inertia.\",\"PeriodicalId\":376940,\"journal\":{\"name\":\"Robotics and Technical Cybernetics\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Technical Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31776/rtcj.11103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Technical Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31776/rtcj.11103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Creation of a 3D kinematic model of the Delta manipulator using computer-aided design in NX
The article discusses the design of the Delta robot, which is part of a multirobotic system for aliquoting biological fluid. The purpose of the article is to obtain a dynamic model of the Delta manipulator using 3D modeling, which will allow studying the kinematic and dynamic characteristics of the manipulator for the specified parameters. A computer-aided design (CAD) system is used for modeling. The article presents an analytical calculation of the kinematic and dynamic parameters of the Delta manipulator in the RS structure, a solution to the inverse problem is presented. The process of creating a digital calculation model in the NX Nasrtan system is described. The preliminary calculation of kinematic and dynamic parameters made it possible to set parameters in the NX Nastran system to ensure the rotation of the drive shafts of the engines in accordance with the specified trajectory of the output link. For all parts of the manipulator, the center of mass is determined and the material is assigned. Motion simulation was carried out and dependences of changes in speeds, accelerations and movements of the manipulator links were obtained to implement the required trajectory of the mobile platform. This calculation allows you to build the trajectory of the output link with a given speed, setting the rotation of the drive links of the calculated model taking into account the forces of inertia.