线性连续反馈系统的滑模控制设计:两步LMI方法

H. Septanto, A. S. Rohman
{"title":"线性连续反馈系统的滑模控制设计:两步LMI方法","authors":"H. Septanto, A. S. Rohman","doi":"10.1109/ICICI-BME.2009.5417250","DOIUrl":null,"url":null,"abstract":"This paper presents a sliding mode controller design of linear continuous systems with the guaranteed asymptotic stability. This controller design is done via two-steps linear matrix inequalities (LMI) approach. A degree of conservativeness is employed to facilitate linear forms of all controller parameters in the LMI formulation. Simulation examples are then given to show the effectiveness of the approach in both regulator and constant input tracking systems.","PeriodicalId":191194,"journal":{"name":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","volume":"691 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sliding mode control design of linear continuous feedback systems: Two-steps LMI approach\",\"authors\":\"H. Septanto, A. S. Rohman\",\"doi\":\"10.1109/ICICI-BME.2009.5417250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sliding mode controller design of linear continuous systems with the guaranteed asymptotic stability. This controller design is done via two-steps linear matrix inequalities (LMI) approach. A degree of conservativeness is employed to facilitate linear forms of all controller parameters in the LMI formulation. Simulation examples are then given to show the effectiveness of the approach in both regulator and constant input tracking systems.\",\"PeriodicalId\":191194,\"journal\":{\"name\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"volume\":\"691 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICI-BME.2009.5417250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI-BME.2009.5417250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了具有保证渐近稳定的线性连续系统的滑模控制器设计。该控制器的设计是通过两步线性矩阵不等式(LMI)方法完成的。采用一定程度的保守性来简化LMI公式中所有控制器参数的线性形式。仿真实例表明了该方法在稳压跟踪和恒输入跟踪系统中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding mode control design of linear continuous feedback systems: Two-steps LMI approach
This paper presents a sliding mode controller design of linear continuous systems with the guaranteed asymptotic stability. This controller design is done via two-steps linear matrix inequalities (LMI) approach. A degree of conservativeness is employed to facilitate linear forms of all controller parameters in the LMI formulation. Simulation examples are then given to show the effectiveness of the approach in both regulator and constant input tracking systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信