MOSFET建模的SPICE优化人工智能技术

J. E. Suseno, M. Riyadi, N. Alias, Y. W. Heong, R. Ismail
{"title":"MOSFET建模的SPICE优化人工智能技术","authors":"J. E. Suseno, M. Riyadi, N. Alias, Y. W. Heong, R. Ismail","doi":"10.1109/CITISIA.2009.5224238","DOIUrl":null,"url":null,"abstract":"This paper proposes new method for optimize and verified electric characterization graph of MOSFET by using artificial neural network. Optimization using Neural Network (ONN) will compare current-voltage (I–V) Characteristic graph between the TCAD simulation and TSPICE modeling as desire data control a model parameter of BSIM. In this paper, the neural network method is dynamic feedforward Neural Network. After NN training, the best result is at Neural Network architecture of 36-30-10-5 with Mean Squared Error (MSE) of 1e-28 at epoch of 5.","PeriodicalId":144722,"journal":{"name":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial intelligence techniques for SPICE optimization of MOSFET modeling\",\"authors\":\"J. E. Suseno, M. Riyadi, N. Alias, Y. W. Heong, R. Ismail\",\"doi\":\"10.1109/CITISIA.2009.5224238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes new method for optimize and verified electric characterization graph of MOSFET by using artificial neural network. Optimization using Neural Network (ONN) will compare current-voltage (I–V) Characteristic graph between the TCAD simulation and TSPICE modeling as desire data control a model parameter of BSIM. In this paper, the neural network method is dynamic feedforward Neural Network. After NN training, the best result is at Neural Network architecture of 36-30-10-5 with Mean Squared Error (MSE) of 1e-28 at epoch of 5.\",\"PeriodicalId\":144722,\"journal\":{\"name\":\"2009 Innovative Technologies in Intelligent Systems and Industrial Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Innovative Technologies in Intelligent Systems and Industrial Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITISIA.2009.5224238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA.2009.5224238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了利用人工神经网络优化和验证MOSFET电特性图的新方法。利用神经网络(ONN)进行优化,比较TCAD仿真和TSPICE建模之间的电流-电压(I-V)特征图,作为期望数据控制BSIM的模型参数。本文采用的神经网络方法是动态前馈神经网络。经过神经网络训练,得到的最佳结果是36-30-10-5的神经网络结构,在epoch为5时的均方误差(MSE)为1e-28。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence techniques for SPICE optimization of MOSFET modeling
This paper proposes new method for optimize and verified electric characterization graph of MOSFET by using artificial neural network. Optimization using Neural Network (ONN) will compare current-voltage (I–V) Characteristic graph between the TCAD simulation and TSPICE modeling as desire data control a model parameter of BSIM. In this paper, the neural network method is dynamic feedforward Neural Network. After NN training, the best result is at Neural Network architecture of 36-30-10-5 with Mean Squared Error (MSE) of 1e-28 at epoch of 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信