{"title":"一种10MHz高Q值压阻式MEMS谐振器","authors":"J.t.m. Beek, P. Steeneken, B. Giesbers","doi":"10.1109/FREQ.2006.275432","DOIUrl":null,"url":null,"abstract":"A novel bulk mode MEMS resonator is presented where mechanical motion is detected using the piezoresistive properties of Si. The piezoresistive readout allows for a high transduction efficiency. The transconductance gm obtained in this manner can be many times higher than the admittance Ym obtained in MEMS resonators that use capacitive read-out. By means of a small signal model it is shown that the transconductance is insensitive to geometric scaling, which allows for the realization of miniature high frequency MEMS resonators and oscillators without performance reduction. The piezoresistive detection method is experimentally validated using a 10MHz bulk acoustic mode resonator processed on SOI. Even for a transduction gap as large as 1.3 mum, it is shown that the transconductance can be as high as 90 muS combined with a Q-factor of 125.000.","PeriodicalId":445945,"journal":{"name":"2006 IEEE International Frequency Control Symposium and Exposition","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"A 10MHz piezoresistive MEMS resonator with high Q\",\"authors\":\"J.t.m. Beek, P. Steeneken, B. Giesbers\",\"doi\":\"10.1109/FREQ.2006.275432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel bulk mode MEMS resonator is presented where mechanical motion is detected using the piezoresistive properties of Si. The piezoresistive readout allows for a high transduction efficiency. The transconductance gm obtained in this manner can be many times higher than the admittance Ym obtained in MEMS resonators that use capacitive read-out. By means of a small signal model it is shown that the transconductance is insensitive to geometric scaling, which allows for the realization of miniature high frequency MEMS resonators and oscillators without performance reduction. The piezoresistive detection method is experimentally validated using a 10MHz bulk acoustic mode resonator processed on SOI. Even for a transduction gap as large as 1.3 mum, it is shown that the transconductance can be as high as 90 muS combined with a Q-factor of 125.000.\",\"PeriodicalId\":445945,\"journal\":{\"name\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2006.275432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Frequency Control Symposium and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2006.275432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
摘要
提出了一种新型体模MEMS谐振器,利用硅的压阻特性检测机械运动。压阻式读数允许高转导效率。以这种方式获得的跨导gm可以比使用电容读出的MEMS谐振器获得的导纳Ym高许多倍。通过一个小信号模型,表明跨导对几何尺度不敏感,从而可以实现不降低性能的微型高频MEMS谐振器和振荡器。利用SOI处理的10MHz体声模谐振器对压阻检测方法进行了实验验证。即使转导间隙为1.3 μ m,跨导也可以高达90 μ m, q因子为12.5万。
A novel bulk mode MEMS resonator is presented where mechanical motion is detected using the piezoresistive properties of Si. The piezoresistive readout allows for a high transduction efficiency. The transconductance gm obtained in this manner can be many times higher than the admittance Ym obtained in MEMS resonators that use capacitive read-out. By means of a small signal model it is shown that the transconductance is insensitive to geometric scaling, which allows for the realization of miniature high frequency MEMS resonators and oscillators without performance reduction. The piezoresistive detection method is experimentally validated using a 10MHz bulk acoustic mode resonator processed on SOI. Even for a transduction gap as large as 1.3 mum, it is shown that the transconductance can be as high as 90 muS combined with a Q-factor of 125.000.