F. Ferreira, Felipe Gruendemann, R. Araújo, Adenauer C. Yamin, Luciano Agostini
{"title":"静脉系统输液模式推断:一种使用机器学习技术的方法","authors":"F. Ferreira, Felipe Gruendemann, R. Araújo, Adenauer C. Yamin, Luciano Agostini","doi":"10.5753/sbcas.2021.16069","DOIUrl":null,"url":null,"abstract":"Os procedimentos de infusão intravenosa estão entre os mais usuais em hospitais e têm potencial para gerar alta ocorrência de eventos adversos. No entanto, as infusões intravenosas ainda não têm a sua verificação automatizada. Considerando este cenário, este trabalho propõe uma nova abordagem para reduzir eventos adversos em procedimentos intravenosos utilizando Aprendizado de Máquina para permitir uma inferência autônoma e registro dos perfis de infusões intravenosas. Dois regressores baseados em redes neurais foram avaliados: Multi-Layer Perceptron e Long-Short Term Memory. A avaliação dos modelos regressão, para as inferências dos perfis de administração de medicamentos intravenosos, obtiveram resultados promissores.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"292 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferência dos Perfis de Infusão em Sistemas Intravenosos: Uma Abordagem Empregando Técnicas de Aprendizagem de Máquina\",\"authors\":\"F. Ferreira, Felipe Gruendemann, R. Araújo, Adenauer C. Yamin, Luciano Agostini\",\"doi\":\"10.5753/sbcas.2021.16069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Os procedimentos de infusão intravenosa estão entre os mais usuais em hospitais e têm potencial para gerar alta ocorrência de eventos adversos. No entanto, as infusões intravenosas ainda não têm a sua verificação automatizada. Considerando este cenário, este trabalho propõe uma nova abordagem para reduzir eventos adversos em procedimentos intravenosos utilizando Aprendizado de Máquina para permitir uma inferência autônoma e registro dos perfis de infusões intravenosas. Dois regressores baseados em redes neurais foram avaliados: Multi-Layer Perceptron e Long-Short Term Memory. A avaliação dos modelos regressão, para as inferências dos perfis de administração de medicamentos intravenosos, obtiveram resultados promissores.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"292 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inferência dos Perfis de Infusão em Sistemas Intravenosos: Uma Abordagem Empregando Técnicas de Aprendizagem de Máquina
Os procedimentos de infusão intravenosa estão entre os mais usuais em hospitais e têm potencial para gerar alta ocorrência de eventos adversos. No entanto, as infusões intravenosas ainda não têm a sua verificação automatizada. Considerando este cenário, este trabalho propõe uma nova abordagem para reduzir eventos adversos em procedimentos intravenosos utilizando Aprendizado de Máquina para permitir uma inferência autônoma e registro dos perfis de infusões intravenosas. Dois regressores baseados em redes neurais foram avaliados: Multi-Layer Perceptron e Long-Short Term Memory. A avaliação dos modelos regressão, para as inferências dos perfis de administração de medicamentos intravenosos, obtiveram resultados promissores.