测温材料Lu1-xScxNiSb的特性

V. Pashkevych, V. Krayovskyy, A. Horpenyuk, V. Romaka, Y. Stadnyk, L. Romaka, A. Horyn, V. Romaka
{"title":"测温材料Lu1-xScxNiSb的特性","authors":"V. Pashkevych, V. Krayovskyy, A. Horpenyuk, V. Romaka, Y. Stadnyk, L. Romaka, A. Horyn, V. Romaka","doi":"10.23939/istcmtm2022.02.021","DOIUrl":null,"url":null,"abstract":"The results of modeling the properties of the semiconductor solid solution Lu1-xScxNiSb, x=0–0.10, which is a promising thermometric material for the manufacture of sensitive elements of thermocouples, are presented. Modeling of the electronic structure of Lu1-xScxNiSb was performed by the Korringa-Kohn-Rostoker (KKR) method in the approximation of coherent potential and local density and by the full-potential method of linearized plane waves (FLAPW). KKR simulations were performed using the AkaiKKR software package in the local density approximation for the exchange-correlation potential with parameterization Moruzzi, Janak, Williams. The Elk software package was used in the FLAPW calculations. To check the limits of the existence of the thermometric material Lu1-xScxNiSb by the KKR method, the change of the values of the period of the unit cell a(x) in the range x=0–0.10 was calculated. It is established that the substitution of Lu atoms in the crystallographic position 4a by Sc atoms is accompanied by a decrease in the values of the unit cell period a(x) Lu1-xScxNiSb. This behavior of a(x) Lu1-xScxNiSb is since the atomic radius Sc (rSc=0.164 nm) is smaller than that of Lu (rLu=0.173 nm). In this case, structural defects of neutral nature are generated in Lu1-xScxNiSb, because the atoms Lu (5d 1 6s 2 ) and Sc (3d 1 4s 2 ) are located in the same group of the Periodic Table of the Elements and contain the same number of d-electrons. To study the conditions for obtaining thermometric material Lu1-xScxNiSb, x=0–0.10, and to establish the energy feasibility of its formation in the form of a continuous solid solution, modeling of thermodynamic characteristics in the approximation of harmonic oscillations of atoms within the DFT density functional theory. The low values of the enthalpy of mixing ΔHmix(x) and the nature of the dependence behavior indicate the energy expediency of substitution in the crystallographic position 4a of Lu atoms for Sc atoms and the existence of a solid substitution solution for the studied samples Lu1-xScxNiSb, x=0–0.10. To understand the mechanisms of electrical conductivity of the thermometric material Lu1-xScxNiSb, x=0–0.10, various models of crystal and electronic structures of the basic semiconductor LuNiSb are considered. Assuming that the crystal structure of Lu1-xScxNiSb is ordered (crystallographic positions are occupied by atoms according to the MgAgAs structural type), the Elk software package was used to model the DOS electronic state density distribution for LuNiSb and Lu0.875Sc0.125NiSb. It is shown that in the LuNiSb compound the Fermi level lies in the middle of the band gap , and the bandwidth is =190.5 meV. DOS simulations for the ordered variant of the Lu0.875Sc0.125NiSb crystal structure show a redistribution of the density of DOS electronic states and an increase in the band gap . In this case, the Fermi level , as in the case of LuNiSb, lies in the middle of the band gap , and the generated structural defects are neutral. The DOS calculation for the disordered variant of the crystal structure of the LuNiSb compound was performed using a model that can be described by the formula Lu1+yNi1-2ySb. In this model, the Lu atoms partially move to the 4c position of the Ni atoms, and in this position, a vacancy (y) occurs simultaneously. Moreover, as many Lu atoms additionally move to the 4c position of Ni atoms, so many vacancies arise in this position. In this model of the crystal structure of the LuNiSb compound and the absence of vacancies (y=0), the calculation of the DOS electronic state density distribution indicates the presence of the band gap εg , and the Fermi level εF lies near the valence band εV. In the model of the structure of the LuNiSb compound at vacancy concentrations y=0.01, the DOS calculation also shows the presence of the band gap εg , and the Fermi level εF still lies near the valence band εV. Since Ni atoms make the greatest contribution to the formation of the conduction band εC, even at a concentration of y=0.02, the DOS calculation shows that the Fermi level εF now lies near the conduction band εC. This means that the main carriers of the electric current of the LuNiSb compound at y=0.02 are electrons, which does not correspond to the results of experimental studies. Based on the above model of the disordered crystal structure of the LuNiSb compound, the density distribution of DOS electronic states was calculated for the disordered variant of the crystal structure of the thermometric material Lu1-xScxNiSb, which is described by the formula Lu1-x+yScxNi1-2ySb. In this model of the Lu1-xScxNiSb crystal structure, the calculation of the DOS electronic state density distribution shows the presence of a band gap εg , in which small energy levels (\"tail tails\") are formed, which overlap with the zones of continuous energies. In this case, the Fermi level εF is localized at low energy levels, which makes it impossible to accurately determine the depth from the Fermi level εF. The proposed model is correct only for a small number of impurity Sc atoms since the partial occupation of the 4c position of Ni atoms by Lu atoms significantly deforms the structure with its subsequent decay. The results of experimental studies of the kinetic, energy, and magnetic properties of the thermometric material Lu1-xScxNiSb will show the degree of adequacy of the proposed model.","PeriodicalId":415989,"journal":{"name":"Measuring Equipment and Metrology","volume":"485 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CHARACTERISTICS OF THERMOMETRIC MATERIAL Lu1-xScxNiSb\",\"authors\":\"V. Pashkevych, V. Krayovskyy, A. Horpenyuk, V. Romaka, Y. Stadnyk, L. Romaka, A. Horyn, V. Romaka\",\"doi\":\"10.23939/istcmtm2022.02.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of modeling the properties of the semiconductor solid solution Lu1-xScxNiSb, x=0–0.10, which is a promising thermometric material for the manufacture of sensitive elements of thermocouples, are presented. Modeling of the electronic structure of Lu1-xScxNiSb was performed by the Korringa-Kohn-Rostoker (KKR) method in the approximation of coherent potential and local density and by the full-potential method of linearized plane waves (FLAPW). KKR simulations were performed using the AkaiKKR software package in the local density approximation for the exchange-correlation potential with parameterization Moruzzi, Janak, Williams. The Elk software package was used in the FLAPW calculations. To check the limits of the existence of the thermometric material Lu1-xScxNiSb by the KKR method, the change of the values of the period of the unit cell a(x) in the range x=0–0.10 was calculated. It is established that the substitution of Lu atoms in the crystallographic position 4a by Sc atoms is accompanied by a decrease in the values of the unit cell period a(x) Lu1-xScxNiSb. This behavior of a(x) Lu1-xScxNiSb is since the atomic radius Sc (rSc=0.164 nm) is smaller than that of Lu (rLu=0.173 nm). In this case, structural defects of neutral nature are generated in Lu1-xScxNiSb, because the atoms Lu (5d 1 6s 2 ) and Sc (3d 1 4s 2 ) are located in the same group of the Periodic Table of the Elements and contain the same number of d-electrons. To study the conditions for obtaining thermometric material Lu1-xScxNiSb, x=0–0.10, and to establish the energy feasibility of its formation in the form of a continuous solid solution, modeling of thermodynamic characteristics in the approximation of harmonic oscillations of atoms within the DFT density functional theory. The low values of the enthalpy of mixing ΔHmix(x) and the nature of the dependence behavior indicate the energy expediency of substitution in the crystallographic position 4a of Lu atoms for Sc atoms and the existence of a solid substitution solution for the studied samples Lu1-xScxNiSb, x=0–0.10. To understand the mechanisms of electrical conductivity of the thermometric material Lu1-xScxNiSb, x=0–0.10, various models of crystal and electronic structures of the basic semiconductor LuNiSb are considered. Assuming that the crystal structure of Lu1-xScxNiSb is ordered (crystallographic positions are occupied by atoms according to the MgAgAs structural type), the Elk software package was used to model the DOS electronic state density distribution for LuNiSb and Lu0.875Sc0.125NiSb. It is shown that in the LuNiSb compound the Fermi level lies in the middle of the band gap , and the bandwidth is =190.5 meV. DOS simulations for the ordered variant of the Lu0.875Sc0.125NiSb crystal structure show a redistribution of the density of DOS electronic states and an increase in the band gap . In this case, the Fermi level , as in the case of LuNiSb, lies in the middle of the band gap , and the generated structural defects are neutral. The DOS calculation for the disordered variant of the crystal structure of the LuNiSb compound was performed using a model that can be described by the formula Lu1+yNi1-2ySb. In this model, the Lu atoms partially move to the 4c position of the Ni atoms, and in this position, a vacancy (y) occurs simultaneously. Moreover, as many Lu atoms additionally move to the 4c position of Ni atoms, so many vacancies arise in this position. In this model of the crystal structure of the LuNiSb compound and the absence of vacancies (y=0), the calculation of the DOS electronic state density distribution indicates the presence of the band gap εg , and the Fermi level εF lies near the valence band εV. In the model of the structure of the LuNiSb compound at vacancy concentrations y=0.01, the DOS calculation also shows the presence of the band gap εg , and the Fermi level εF still lies near the valence band εV. Since Ni atoms make the greatest contribution to the formation of the conduction band εC, even at a concentration of y=0.02, the DOS calculation shows that the Fermi level εF now lies near the conduction band εC. This means that the main carriers of the electric current of the LuNiSb compound at y=0.02 are electrons, which does not correspond to the results of experimental studies. Based on the above model of the disordered crystal structure of the LuNiSb compound, the density distribution of DOS electronic states was calculated for the disordered variant of the crystal structure of the thermometric material Lu1-xScxNiSb, which is described by the formula Lu1-x+yScxNi1-2ySb. In this model of the Lu1-xScxNiSb crystal structure, the calculation of the DOS electronic state density distribution shows the presence of a band gap εg , in which small energy levels (\\\"tail tails\\\") are formed, which overlap with the zones of continuous energies. In this case, the Fermi level εF is localized at low energy levels, which makes it impossible to accurately determine the depth from the Fermi level εF. The proposed model is correct only for a small number of impurity Sc atoms since the partial occupation of the 4c position of Ni atoms by Lu atoms significantly deforms the structure with its subsequent decay. The results of experimental studies of the kinetic, energy, and magnetic properties of the thermometric material Lu1-xScxNiSb will show the degree of adequacy of the proposed model.\",\"PeriodicalId\":415989,\"journal\":{\"name\":\"Measuring Equipment and Metrology\",\"volume\":\"485 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measuring Equipment and Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/istcmtm2022.02.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measuring Equipment and Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/istcmtm2022.02.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了半导体固溶体Lu1-xScxNiSb (x= 0-0.10)的特性建模结果,它是一种很有前途的热电偶敏感元件的测温材料。采用Korringa-Kohn-Rostoker (KKR)方法和线性化平面波全势方法对Lu1-xScxNiSb的电子结构进行了建模。利用AkaiKKR软件包对交换相关势进行了局部密度近似的参数化模拟。FLAPW计算采用Elk软件包。为了用KKR法检查测温材料Lu1-xScxNiSb的存在极限,计算单元胞a(x)在x= 0-0.10范围内的周期值变化。结果表明,晶体位置4a中的Lu原子被Sc原子取代时,晶胞周期a(x) Lu1-xScxNiSb值减小。这是因为a(x) Lu1-xScxNiSb的原子半径Sc (rSc=0.164 nm)小于Lu (rLu=0.173 nm)。在这种情况下,在Lu1-xScxNiSb中产生中性的结构缺陷,因为原子Lu (5d 1 6s 2)和Sc (3d 1 4s 2)位于元素周期表的同一组,并且含有相同数量的d电子。为了研究测温材料Lu1-xScxNiSb, x= 0-0.10的制备条件,并建立其以连续固溶体形式形成的能量可行性,在DFT密度泛函理论中近似原子谐波振荡的热力学特性建模。混合焓值ΔHmix(x)较低和依赖行为的性质表明,在晶体学位置4a上,Lu原子取代Sc原子具有能量上的便利性,并且在所研究的样品Lu1-xScxNiSb中存在固体取代溶液,x= 0-0.10。为了了解测温材料Lu1-xScxNiSb (x= 0-0.10)的导电性机制,考虑了基本半导体LuNiSb的各种晶体和电子结构模型。假设Lu1-xScxNiSb的晶体结构是有序的(晶体位置根据MgAgAs结构类型被原子占据),利用Elk软件包对LuNiSb和Lu0.875Sc0.125NiSb的DOS电子态密度分布进行建模。结果表明,在LuNiSb化合物中,费米能级位于带隙的中间,带宽=190.5 meV。对有序型Lu0.875Sc0.125NiSb晶体结构的DOS模拟表明,DOS电子态密度重新分布,带隙增大。在这种情况下,与LuNiSb的情况一样,费米能级位于带隙的中间,产生的结构缺陷是中性的。利用公式Lu1+yNi1-2ySb描述的模型对LuNiSb化合物的无序晶体结构进行了DOS计算。在这个模型中,Lu原子部分移动到Ni原子的4c位置,在这个位置上,同时出现一个空位(y)。此外,由于许多Lu原子额外移动到Ni原子的4c位置,因此在该位置产生了许多空位。在该模型中,化合物的晶体结构为无空位(y=0), DOS电子态密度分布的计算表明,带隙εg的存在,费米能级εF位于价带εV附近。在空位浓度为y=0.01的LuNiSb化合物结构模型中,DOS计算也显示出带隙εg的存在,费米能级εF仍位于价带εV附近。由于Ni原子对导带εC的形成贡献最大,即使在浓度为y=0.02时,DOS计算表明费米能级εF现在位于导带εC附近。这意味着在y=0.02时LuNiSb化合物电流的主要载流子是电子,这与实验研究的结果并不相符。基于上述LuNiSb化合物无序晶体结构模型,计算了测温材料Lu1-xScxNiSb晶体结构无序变体的DOS电子态密度分布,表示为Lu1-x+yScxNi1-2ySb。在该Lu1-xScxNiSb晶体结构模型中,DOS电子态密度分布的计算表明存在带隙εg,其中形成了小能级(“尾尾”),这些能级与连续能区重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHARACTERISTICS OF THERMOMETRIC MATERIAL Lu1-xScxNiSb
The results of modeling the properties of the semiconductor solid solution Lu1-xScxNiSb, x=0–0.10, which is a promising thermometric material for the manufacture of sensitive elements of thermocouples, are presented. Modeling of the electronic structure of Lu1-xScxNiSb was performed by the Korringa-Kohn-Rostoker (KKR) method in the approximation of coherent potential and local density and by the full-potential method of linearized plane waves (FLAPW). KKR simulations were performed using the AkaiKKR software package in the local density approximation for the exchange-correlation potential with parameterization Moruzzi, Janak, Williams. The Elk software package was used in the FLAPW calculations. To check the limits of the existence of the thermometric material Lu1-xScxNiSb by the KKR method, the change of the values of the period of the unit cell a(x) in the range x=0–0.10 was calculated. It is established that the substitution of Lu atoms in the crystallographic position 4a by Sc atoms is accompanied by a decrease in the values of the unit cell period a(x) Lu1-xScxNiSb. This behavior of a(x) Lu1-xScxNiSb is since the atomic radius Sc (rSc=0.164 nm) is smaller than that of Lu (rLu=0.173 nm). In this case, structural defects of neutral nature are generated in Lu1-xScxNiSb, because the atoms Lu (5d 1 6s 2 ) and Sc (3d 1 4s 2 ) are located in the same group of the Periodic Table of the Elements and contain the same number of d-electrons. To study the conditions for obtaining thermometric material Lu1-xScxNiSb, x=0–0.10, and to establish the energy feasibility of its formation in the form of a continuous solid solution, modeling of thermodynamic characteristics in the approximation of harmonic oscillations of atoms within the DFT density functional theory. The low values of the enthalpy of mixing ΔHmix(x) and the nature of the dependence behavior indicate the energy expediency of substitution in the crystallographic position 4a of Lu atoms for Sc atoms and the existence of a solid substitution solution for the studied samples Lu1-xScxNiSb, x=0–0.10. To understand the mechanisms of electrical conductivity of the thermometric material Lu1-xScxNiSb, x=0–0.10, various models of crystal and electronic structures of the basic semiconductor LuNiSb are considered. Assuming that the crystal structure of Lu1-xScxNiSb is ordered (crystallographic positions are occupied by atoms according to the MgAgAs structural type), the Elk software package was used to model the DOS electronic state density distribution for LuNiSb and Lu0.875Sc0.125NiSb. It is shown that in the LuNiSb compound the Fermi level lies in the middle of the band gap , and the bandwidth is =190.5 meV. DOS simulations for the ordered variant of the Lu0.875Sc0.125NiSb crystal structure show a redistribution of the density of DOS electronic states and an increase in the band gap . In this case, the Fermi level , as in the case of LuNiSb, lies in the middle of the band gap , and the generated structural defects are neutral. The DOS calculation for the disordered variant of the crystal structure of the LuNiSb compound was performed using a model that can be described by the formula Lu1+yNi1-2ySb. In this model, the Lu atoms partially move to the 4c position of the Ni atoms, and in this position, a vacancy (y) occurs simultaneously. Moreover, as many Lu atoms additionally move to the 4c position of Ni atoms, so many vacancies arise in this position. In this model of the crystal structure of the LuNiSb compound and the absence of vacancies (y=0), the calculation of the DOS electronic state density distribution indicates the presence of the band gap εg , and the Fermi level εF lies near the valence band εV. In the model of the structure of the LuNiSb compound at vacancy concentrations y=0.01, the DOS calculation also shows the presence of the band gap εg , and the Fermi level εF still lies near the valence band εV. Since Ni atoms make the greatest contribution to the formation of the conduction band εC, even at a concentration of y=0.02, the DOS calculation shows that the Fermi level εF now lies near the conduction band εC. This means that the main carriers of the electric current of the LuNiSb compound at y=0.02 are electrons, which does not correspond to the results of experimental studies. Based on the above model of the disordered crystal structure of the LuNiSb compound, the density distribution of DOS electronic states was calculated for the disordered variant of the crystal structure of the thermometric material Lu1-xScxNiSb, which is described by the formula Lu1-x+yScxNi1-2ySb. In this model of the Lu1-xScxNiSb crystal structure, the calculation of the DOS electronic state density distribution shows the presence of a band gap εg , in which small energy levels ("tail tails") are formed, which overlap with the zones of continuous energies. In this case, the Fermi level εF is localized at low energy levels, which makes it impossible to accurately determine the depth from the Fermi level εF. The proposed model is correct only for a small number of impurity Sc atoms since the partial occupation of the 4c position of Ni atoms by Lu atoms significantly deforms the structure with its subsequent decay. The results of experimental studies of the kinetic, energy, and magnetic properties of the thermometric material Lu1-xScxNiSb will show the degree of adequacy of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信