{"title":"基于自由体积和熵标度理论的纯碳氢化合物在大范围温度和压力下的粘度模型","authors":"Hseen O. Baled, I. Gamwo","doi":"10.5772/intechopen.86321","DOIUrl":null,"url":null,"abstract":"Viscosity is a critical fundamental property required in many applications in the chemical and oil industry. Direct measurements of this property are usually expensive and time-consuming. Therefore, reliable predictive methods are often employed to obtain the viscosity. In this work, two viscosity models based on the free-volume and entropy scaling theories are assessed and compared for pure hydrocarbons. The modeling results are compared to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This study considers viscosity data to extremely high-temperature and high-pressure (HTHP) conditions up to 573 K and 300 MPa. The results obtained with the free-volume theory viscosity in conjunction with the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state are characterized by an overall average absolute deviation (AAD%) of 3% from the experimental data. The overall AAD% obtained with the predictive entropy scaling method by Lö-tgering-Lin and Gross is 8%.","PeriodicalId":420578,"journal":{"name":"Thermophysical Properties of Complex Materials","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viscosity Models Based on the Free Volume and Entropy Scaling Theories for Pure Hydrocarbons over a Wide Range of Temperatures and Pressures\",\"authors\":\"Hseen O. Baled, I. Gamwo\",\"doi\":\"10.5772/intechopen.86321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viscosity is a critical fundamental property required in many applications in the chemical and oil industry. Direct measurements of this property are usually expensive and time-consuming. Therefore, reliable predictive methods are often employed to obtain the viscosity. In this work, two viscosity models based on the free-volume and entropy scaling theories are assessed and compared for pure hydrocarbons. The modeling results are compared to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This study considers viscosity data to extremely high-temperature and high-pressure (HTHP) conditions up to 573 K and 300 MPa. The results obtained with the free-volume theory viscosity in conjunction with the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state are characterized by an overall average absolute deviation (AAD%) of 3% from the experimental data. The overall AAD% obtained with the predictive entropy scaling method by Lö-tgering-Lin and Gross is 8%.\",\"PeriodicalId\":420578,\"journal\":{\"name\":\"Thermophysical Properties of Complex Materials\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysical Properties of Complex Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.86321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysical Properties of Complex Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.86321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Viscosity Models Based on the Free Volume and Entropy Scaling Theories for Pure Hydrocarbons over a Wide Range of Temperatures and Pressures
Viscosity is a critical fundamental property required in many applications in the chemical and oil industry. Direct measurements of this property are usually expensive and time-consuming. Therefore, reliable predictive methods are often employed to obtain the viscosity. In this work, two viscosity models based on the free-volume and entropy scaling theories are assessed and compared for pure hydrocarbons. The modeling results are compared to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This study considers viscosity data to extremely high-temperature and high-pressure (HTHP) conditions up to 573 K and 300 MPa. The results obtained with the free-volume theory viscosity in conjunction with the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state are characterized by an overall average absolute deviation (AAD%) of 3% from the experimental data. The overall AAD% obtained with the predictive entropy scaling method by Lö-tgering-Lin and Gross is 8%.