实时可视化的多元正数据网格化

G. Mustafa, A. Shah, M. Asim
{"title":"实时可视化的多元正数据网格化","authors":"G. Mustafa, A. Shah, M. Asim","doi":"10.1109/CGIV.2006.50","DOIUrl":null,"url":null,"abstract":"Common visualization methods require an underlying grid. For visualization of scattered data samples it is required to approximate the data at the same grid using some interpolation technique. It is common that the data samples are positive and representing the quantities for which negative value is meaningless. For example mass, volume and density are meaningless when negative. Modified quadratic Shepard method is a commonly used method for gridding purposes. However it does not preserve positivity for inherently positive data sets. This paper discusses the problem of gridding inherently positive data sets for real time visualization applications using modified quadratic Shepard's method. Key requirement for an algorithm to be used for real time application is its predictable timing behavior. We present an efficient and deterministic alternative quadratic Shepard method as a solution to the problem of visualization of multivariate positive data in real time","PeriodicalId":264596,"journal":{"name":"International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)","volume":"48 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gridding Multivariate Positive Data for Real Time Visualization\",\"authors\":\"G. Mustafa, A. Shah, M. Asim\",\"doi\":\"10.1109/CGIV.2006.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Common visualization methods require an underlying grid. For visualization of scattered data samples it is required to approximate the data at the same grid using some interpolation technique. It is common that the data samples are positive and representing the quantities for which negative value is meaningless. For example mass, volume and density are meaningless when negative. Modified quadratic Shepard method is a commonly used method for gridding purposes. However it does not preserve positivity for inherently positive data sets. This paper discusses the problem of gridding inherently positive data sets for real time visualization applications using modified quadratic Shepard's method. Key requirement for an algorithm to be used for real time application is its predictable timing behavior. We present an efficient and deterministic alternative quadratic Shepard method as a solution to the problem of visualization of multivariate positive data in real time\",\"PeriodicalId\":264596,\"journal\":{\"name\":\"International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)\",\"volume\":\"48 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2006.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2006.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

常见的可视化方法需要一个底层网格。为了使分散的数据样本可视化,需要使用一些插值技术来近似同一网格上的数据。通常情况下,数据样本是正的,并且代表了负值没有意义的数量。例如,质量、体积和密度在负数时是没有意义的。修正二次谢泼德法是一种常用的网格划分方法。然而,它不能保留固有正数据集的正性。本文讨论了利用改进的二次Shepard方法对实时可视化应用中的固有正数据集进行网格化的问题。用于实时应用的算法的关键要求是其可预测的时序行为。针对多元正数据的实时可视化问题,提出了一种高效、确定的备选二次Shepard方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gridding Multivariate Positive Data for Real Time Visualization
Common visualization methods require an underlying grid. For visualization of scattered data samples it is required to approximate the data at the same grid using some interpolation technique. It is common that the data samples are positive and representing the quantities for which negative value is meaningless. For example mass, volume and density are meaningless when negative. Modified quadratic Shepard method is a commonly used method for gridding purposes. However it does not preserve positivity for inherently positive data sets. This paper discusses the problem of gridding inherently positive data sets for real time visualization applications using modified quadratic Shepard's method. Key requirement for an algorithm to be used for real time application is its predictable timing behavior. We present an efficient and deterministic alternative quadratic Shepard method as a solution to the problem of visualization of multivariate positive data in real time
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信