信息流实验的方法论

Michael Carl Tschantz, Amit Datta, Anupam Datta, Jeannette M. Wing
{"title":"信息流实验的方法论","authors":"Michael Carl Tschantz, Amit Datta, Anupam Datta, Jeannette M. Wing","doi":"10.1109/CSF.2015.40","DOIUrl":null,"url":null,"abstract":"Information flow analysis has largely focused on methods that require access to the program in question or total control over an analyzed system. We consider the case where the analyst has neither control over nor a white-box model of the analyzed system. We formalize such limited information flow analyses and study an instance of it: detecting the usage of data by websites. We reduce these problems to ones of causal inference by proving a connection between non-interference and causation. Leveraging this connection, we provide a systematic black-box methodology based on experimental science and statistical analysis. Our systematic study leads to practical advice for detecting web data usage, a previously normalized area. We illustrate these concepts with a series of experiments collecting data on the use of information by websites.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A Methodology for Information Flow Experiments\",\"authors\":\"Michael Carl Tschantz, Amit Datta, Anupam Datta, Jeannette M. Wing\",\"doi\":\"10.1109/CSF.2015.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information flow analysis has largely focused on methods that require access to the program in question or total control over an analyzed system. We consider the case where the analyst has neither control over nor a white-box model of the analyzed system. We formalize such limited information flow analyses and study an instance of it: detecting the usage of data by websites. We reduce these problems to ones of causal inference by proving a connection between non-interference and causation. Leveraging this connection, we provide a systematic black-box methodology based on experimental science and statistical analysis. Our systematic study leads to practical advice for detecting web data usage, a previously normalized area. We illustrate these concepts with a series of experiments collecting data on the use of information by websites.\",\"PeriodicalId\":210917,\"journal\":{\"name\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2015.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

信息流分析主要集中在需要访问所讨论的程序或对所分析系统的完全控制的方法上。我们考虑分析人员既没有控制也没有被分析系统的白盒模型的情况。我们将这种有限信息流分析形式化,并研究了它的一个实例:检测网站对数据的使用。我们通过证明不干涉和因果关系之间的联系,将这些问题简化为因果推理的问题。利用这种联系,我们提供了一种基于实验科学和统计分析的系统黑箱方法。我们的系统研究为检测网络数据使用提供了实用的建议,这是一个以前标准化的领域。我们通过一系列收集网站信息使用数据的实验来说明这些概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodology for Information Flow Experiments
Information flow analysis has largely focused on methods that require access to the program in question or total control over an analyzed system. We consider the case where the analyst has neither control over nor a white-box model of the analyzed system. We formalize such limited information flow analyses and study an instance of it: detecting the usage of data by websites. We reduce these problems to ones of causal inference by proving a connection between non-interference and causation. Leveraging this connection, we provide a systematic black-box methodology based on experimental science and statistical analysis. Our systematic study leads to practical advice for detecting web data usage, a previously normalized area. We illustrate these concepts with a series of experiments collecting data on the use of information by websites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信