无线通信可靠性分析的数据处理

S. Sobhgol, S. Willmann, L. Rauchhaupt
{"title":"无线通信可靠性分析的数据处理","authors":"S. Sobhgol, S. Willmann, L. Rauchhaupt","doi":"10.1109/sa47457.2019.8938095","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the dependability assessment of industrial wireless communication. The objective of this paper is to find the most significant assessment parameters and functions of logical link. First, motivation is given for new approaches to the dependability assessment of industrial networks. Next, the approach of the up-state function (USF) is introduced. For the construction of USF, significant parameters are needed, which are sought by different methods such as principal component analysis (PCA) and regression analysis. Finding the optimal variables for every environment and condition helps to identify the factors affecting the quality of wireless communication. In this paper, we are employing time series analysis and recurrent neural network to predict the most reliable value for each parameter for the next state. The analysis is based on a numerical training data set made of five different correlated parameters, including transmission time, update time, consecutive message loss, sent messages and lost messages.","PeriodicalId":383922,"journal":{"name":"2019 First International Conference on Societal Automation (SA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Processing of data for dependability analysis of wireless communication\",\"authors\":\"S. Sobhgol, S. Willmann, L. Rauchhaupt\",\"doi\":\"10.1109/sa47457.2019.8938095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the dependability assessment of industrial wireless communication. The objective of this paper is to find the most significant assessment parameters and functions of logical link. First, motivation is given for new approaches to the dependability assessment of industrial networks. Next, the approach of the up-state function (USF) is introduced. For the construction of USF, significant parameters are needed, which are sought by different methods such as principal component analysis (PCA) and regression analysis. Finding the optimal variables for every environment and condition helps to identify the factors affecting the quality of wireless communication. In this paper, we are employing time series analysis and recurrent neural network to predict the most reliable value for each parameter for the next state. The analysis is based on a numerical training data set made of five different correlated parameters, including transmission time, update time, consecutive message loss, sent messages and lost messages.\",\"PeriodicalId\":383922,\"journal\":{\"name\":\"2019 First International Conference on Societal Automation (SA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 First International Conference on Societal Automation (SA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sa47457.2019.8938095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference on Societal Automation (SA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sa47457.2019.8938095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究工业无线通信的可靠性评估问题。本文的目的是寻找最重要的评价参数和逻辑环节的功能。首先,给出了工业网络可靠性评估新方法的动机。其次,介绍了上状态函数(USF)的方法。为了构建USF,需要使用不同的方法,如主成分分析(PCA)和回归分析来寻找显著参数。找到各种环境和条件下的最优变量,有助于识别影响无线通信质量的因素。在本文中,我们使用时间序列分析和递归神经网络来预测下一个状态下每个参数的最可靠值。该分析基于由五个不同的相关参数组成的数值训练数据集,包括传输时间、更新时间、连续消息丢失、发送消息和丢失消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Processing of data for dependability analysis of wireless communication
This paper is devoted to the dependability assessment of industrial wireless communication. The objective of this paper is to find the most significant assessment parameters and functions of logical link. First, motivation is given for new approaches to the dependability assessment of industrial networks. Next, the approach of the up-state function (USF) is introduced. For the construction of USF, significant parameters are needed, which are sought by different methods such as principal component analysis (PCA) and regression analysis. Finding the optimal variables for every environment and condition helps to identify the factors affecting the quality of wireless communication. In this paper, we are employing time series analysis and recurrent neural network to predict the most reliable value for each parameter for the next state. The analysis is based on a numerical training data set made of five different correlated parameters, including transmission time, update time, consecutive message loss, sent messages and lost messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信