实现个性化智慧城市数据探索的方法学方法

D. Bianchini, V. D. Antonellis, Massimiliano Garda, M. Melchiori
{"title":"实现个性化智慧城市数据探索的方法学方法","authors":"D. Bianchini, V. D. Antonellis, Massimiliano Garda, M. Melchiori","doi":"10.1109/ISC251055.2020.9239058","DOIUrl":null,"url":null,"abstract":"In modern Smart Cities, the unpredictable growth and heterogeneity of the shared data is raising interest for data lakes repositories, due to their versatility and schema-on-read nature. Personalised data access methods are required to deal with the variety of users, their goals and preferences on available data, and need to be adapted to the unique characteristics of data lakes. Pay-as-you-go or on-demand solutions are advocated, where integration is progressively carried out, and methodologies to enable personalised data exploration are required. In this paper, we present a methodological approach to build users’ profiles, in terms of context, determining the roles and activities of users while acting in the Smart City, and preferences expressed on indicators semantically derived from data lake sources. The proposed methodology includes: (a) the definition of preference constructors based on the semantic representation of indicators from data lake sources; (b) the definition of users’ profiles, in terms of context and preferences; (c) the definition of a procedure to support domain experts and data analysts for enabling personalised exploration of indicators.","PeriodicalId":201808,"journal":{"name":"2020 IEEE International Smart Cities Conference (ISC2)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Methodological Approach for enabling Personalised Smart City Data Exploration\",\"authors\":\"D. Bianchini, V. D. Antonellis, Massimiliano Garda, M. Melchiori\",\"doi\":\"10.1109/ISC251055.2020.9239058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern Smart Cities, the unpredictable growth and heterogeneity of the shared data is raising interest for data lakes repositories, due to their versatility and schema-on-read nature. Personalised data access methods are required to deal with the variety of users, their goals and preferences on available data, and need to be adapted to the unique characteristics of data lakes. Pay-as-you-go or on-demand solutions are advocated, where integration is progressively carried out, and methodologies to enable personalised data exploration are required. In this paper, we present a methodological approach to build users’ profiles, in terms of context, determining the roles and activities of users while acting in the Smart City, and preferences expressed on indicators semantically derived from data lake sources. The proposed methodology includes: (a) the definition of preference constructors based on the semantic representation of indicators from data lake sources; (b) the definition of users’ profiles, in terms of context and preferences; (c) the definition of a procedure to support domain experts and data analysts for enabling personalised exploration of indicators.\",\"PeriodicalId\":201808,\"journal\":{\"name\":\"2020 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC251055.2020.9239058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC251055.2020.9239058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代智慧城市中,由于数据湖存储库的多功能性和读时模式特性,共享数据的不可预测的增长和异构性引起了人们对数据湖存储库的兴趣。个性化的数据访问方法需要处理各种各样的用户,他们的目标和对可用数据的偏好,并且需要适应数据湖的独特特征。提倡按需付费或按需解决方案,其中逐步进行集成,并且需要能够实现个性化数据探索的方法。在本文中,我们提出了一种方法学方法来构建用户档案,根据上下文,确定用户在智慧城市中的角色和活动,以及在语义上源自数据湖来源的指标上表达的偏好。提出的方法包括:(a)基于数据湖数据源中指标的语义表示定义偏好构造函数;(b)根据背景和偏好定义用户资料;(c)定义一个程序,以支持领域专家和数据分析师对指标进行个性化探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodological Approach for enabling Personalised Smart City Data Exploration
In modern Smart Cities, the unpredictable growth and heterogeneity of the shared data is raising interest for data lakes repositories, due to their versatility and schema-on-read nature. Personalised data access methods are required to deal with the variety of users, their goals and preferences on available data, and need to be adapted to the unique characteristics of data lakes. Pay-as-you-go or on-demand solutions are advocated, where integration is progressively carried out, and methodologies to enable personalised data exploration are required. In this paper, we present a methodological approach to build users’ profiles, in terms of context, determining the roles and activities of users while acting in the Smart City, and preferences expressed on indicators semantically derived from data lake sources. The proposed methodology includes: (a) the definition of preference constructors based on the semantic representation of indicators from data lake sources; (b) the definition of users’ profiles, in terms of context and preferences; (c) the definition of a procedure to support domain experts and data analysts for enabling personalised exploration of indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信