基于归一化植被指数的作物系数估计

Hamimu Idrisa, S. Kadam, S. Gorantiwar
{"title":"基于归一化植被指数的作物系数估计","authors":"Hamimu Idrisa, S. Kadam, S. Gorantiwar","doi":"10.56228/jart.2022.47320","DOIUrl":null,"url":null,"abstract":"Crop coefficient is one of the most important parameters used for the estimation of crop evapotranspiration (ETc). Crop coefficient (Kc)-based estimation of crop evapotranspiration is most commonly used methods for irrigation water management. However, crop coefficient approach used for estimation ETc using the generalized crop coefficients mentioned in Irrigation and Drainage Paper No. 56 of the Food and Agricultural Organization of the United Nations can contribute to crop evapotranspiration estimates that are substantially different from actual crop evapotranspiration. The colinear relationship between the crop coefficient curve and a satellitederived Normalized Difference Vegetation Index (NDVI) showed potential for modeling a crop coefficient as a function of the NDVI, which is also one among the methods used for estimation of ETc in irrigation water management. The present study was conducted with objectives to present the techniques and procedures to develop and estimates Kc based on vegetation index (NDVI) extracted from satellite data. The relationships between and NDVI and crop coefficients (Kc) of wheat and chickpea for corresponding months were developed. The regression models developed are: (Kc) NDVI = 6.3268*NDVI-1.4207 for wheat and (Kc) NDVI = 5.7866 * NDVI-1.6699 for chickpea. The models showed strong relationships with R2= 0.86 and R2=0.84 for wheat and chickpea, respectively. The model and techniques to develop and estimate crop coefficients can be used in other regions in the global, and hence estimate crop evapotranspiration. The crop coefficients (Kc) estimated based on NDVI are useful for irrigation scheduling, evaluating irrigation performance, irrigation water management, and estimation of water use efficiency.","PeriodicalId":418512,"journal":{"name":"Journal of Agriculture Research and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Crop Coefficients Based on Normalize Difference Vegetation Index\",\"authors\":\"Hamimu Idrisa, S. Kadam, S. Gorantiwar\",\"doi\":\"10.56228/jart.2022.47320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crop coefficient is one of the most important parameters used for the estimation of crop evapotranspiration (ETc). Crop coefficient (Kc)-based estimation of crop evapotranspiration is most commonly used methods for irrigation water management. However, crop coefficient approach used for estimation ETc using the generalized crop coefficients mentioned in Irrigation and Drainage Paper No. 56 of the Food and Agricultural Organization of the United Nations can contribute to crop evapotranspiration estimates that are substantially different from actual crop evapotranspiration. The colinear relationship between the crop coefficient curve and a satellitederived Normalized Difference Vegetation Index (NDVI) showed potential for modeling a crop coefficient as a function of the NDVI, which is also one among the methods used for estimation of ETc in irrigation water management. The present study was conducted with objectives to present the techniques and procedures to develop and estimates Kc based on vegetation index (NDVI) extracted from satellite data. The relationships between and NDVI and crop coefficients (Kc) of wheat and chickpea for corresponding months were developed. The regression models developed are: (Kc) NDVI = 6.3268*NDVI-1.4207 for wheat and (Kc) NDVI = 5.7866 * NDVI-1.6699 for chickpea. The models showed strong relationships with R2= 0.86 and R2=0.84 for wheat and chickpea, respectively. The model and techniques to develop and estimate crop coefficients can be used in other regions in the global, and hence estimate crop evapotranspiration. The crop coefficients (Kc) estimated based on NDVI are useful for irrigation scheduling, evaluating irrigation performance, irrigation water management, and estimation of water use efficiency.\",\"PeriodicalId\":418512,\"journal\":{\"name\":\"Journal of Agriculture Research and Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56228/jart.2022.47320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56228/jart.2022.47320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作物系数是估算作物蒸散量的重要参数之一。基于作物系数(Kc)的作物蒸散估算是灌溉水管理中最常用的方法。但是,使用联合国粮食及农业组织第56号灌溉和排水文件中提到的广义作物系数来估计ETc的作物系数法可能会导致作物蒸散估算值与实际作物蒸散量有很大差异。作物系数曲线与卫星导出的归一化植被指数(NDVI)之间的共线性关系显示了作物系数作为NDVI函数建模的潜力,这也是灌溉用水管理中ETc估算方法之一。本研究的目的是介绍基于从卫星数据中提取的植被指数(NDVI)开发和估算Kc的技术和程序。研究了小麦和鹰嘴豆相应月份的NDVI与作物系数Kc之间的关系。建立的回归模型为:(Kc)小麦NDVI = 6.3268*NDVI-1.4207,鹰嘴豆NDVI = 5.7866 *NDVI- 1.6699。小麦和鹰嘴豆的相关系数分别为R2= 0.86和R2=0.84。开发和估算作物系数的模型和技术可用于全球其他地区,从而估算作物蒸散量。基于NDVI估算的作物系数(Kc)可用于灌溉调度、灌溉绩效评价、灌溉水管理和水分利用效率估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Crop Coefficients Based on Normalize Difference Vegetation Index
Crop coefficient is one of the most important parameters used for the estimation of crop evapotranspiration (ETc). Crop coefficient (Kc)-based estimation of crop evapotranspiration is most commonly used methods for irrigation water management. However, crop coefficient approach used for estimation ETc using the generalized crop coefficients mentioned in Irrigation and Drainage Paper No. 56 of the Food and Agricultural Organization of the United Nations can contribute to crop evapotranspiration estimates that are substantially different from actual crop evapotranspiration. The colinear relationship between the crop coefficient curve and a satellitederived Normalized Difference Vegetation Index (NDVI) showed potential for modeling a crop coefficient as a function of the NDVI, which is also one among the methods used for estimation of ETc in irrigation water management. The present study was conducted with objectives to present the techniques and procedures to develop and estimates Kc based on vegetation index (NDVI) extracted from satellite data. The relationships between and NDVI and crop coefficients (Kc) of wheat and chickpea for corresponding months were developed. The regression models developed are: (Kc) NDVI = 6.3268*NDVI-1.4207 for wheat and (Kc) NDVI = 5.7866 * NDVI-1.6699 for chickpea. The models showed strong relationships with R2= 0.86 and R2=0.84 for wheat and chickpea, respectively. The model and techniques to develop and estimate crop coefficients can be used in other regions in the global, and hence estimate crop evapotranspiration. The crop coefficients (Kc) estimated based on NDVI are useful for irrigation scheduling, evaluating irrigation performance, irrigation water management, and estimation of water use efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信