基于日前运行规划的风电弃风优化

Rui Alves, F. Reis, Hong Shen
{"title":"基于日前运行规划的风电弃风优化","authors":"Rui Alves, F. Reis, Hong Shen","doi":"10.1109/ISGTEurope.2016.7856216","DOIUrl":null,"url":null,"abstract":"In this paper a day-ahead operational planning methodology, for deciding how much wind power to curtail and where, is presented in order to support the wind power curtailment decision-making by system operators under scenarios of network bottlenecks. The Evolutionary Particle Swarm Optimization algorithm is used to provide robust wind power curtailment solutions at minimum cost. The methodology is validated on a case-study based on the Portuguese transmission system. Obtained results show the capability of the methodology to achieve near optimal curtailment solutions when applied to large-scale power systems.","PeriodicalId":330869,"journal":{"name":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"113 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wind power curtailment optimization for day-ahead operational planning\",\"authors\":\"Rui Alves, F. Reis, Hong Shen\",\"doi\":\"10.1109/ISGTEurope.2016.7856216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a day-ahead operational planning methodology, for deciding how much wind power to curtail and where, is presented in order to support the wind power curtailment decision-making by system operators under scenarios of network bottlenecks. The Evolutionary Particle Swarm Optimization algorithm is used to provide robust wind power curtailment solutions at minimum cost. The methodology is validated on a case-study based on the Portuguese transmission system. Obtained results show the capability of the methodology to achieve near optimal curtailment solutions when applied to large-scale power systems.\",\"PeriodicalId\":330869,\"journal\":{\"name\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"113 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2016.7856216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2016.7856216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了支持电网瓶颈情况下系统运营商的弃风决策,本文提出了一种决定弃风量和弃风地点的日前运行规划方法。采用进化粒子群优化算法,以最小的成本提供鲁棒的风电弃风方案。该方法在基于葡萄牙传输系统的案例研究中得到验证。所得结果表明,该方法在应用于大型电力系统时能够获得接近最优的弃风解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind power curtailment optimization for day-ahead operational planning
In this paper a day-ahead operational planning methodology, for deciding how much wind power to curtail and where, is presented in order to support the wind power curtailment decision-making by system operators under scenarios of network bottlenecks. The Evolutionary Particle Swarm Optimization algorithm is used to provide robust wind power curtailment solutions at minimum cost. The methodology is validated on a case-study based on the Portuguese transmission system. Obtained results show the capability of the methodology to achieve near optimal curtailment solutions when applied to large-scale power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信