Sangyong Park, Seongwook Choi, Kwang Sun Jun, Huijung Kim, Sungman Rhee, Y. Park
{"title":"用自洽模拟研究电荷捕获存储器中保留的多重活化能","authors":"Sangyong Park, Seongwook Choi, Kwang Sun Jun, Huijung Kim, Sungman Rhee, Y. Park","doi":"10.1109/ESSDERC.2014.6948755","DOIUrl":null,"url":null,"abstract":"Non-Arrhenius behavior has been reported in a various temperature range for the retention time of CT Flash memories. In order to understand the physical origin of the multiple activation energy due to the non-Arrhenius behavior, we conduct a simulation study using a 3D self-consistent numerical simulator developed in-house. As a result, it is found that both vertical and lateral charge transport in the conduction band of nitride layer are responsible for the non-Arrhenius retention characteristic. Also, the tunneling current through the bottom oxide and a lifetime criteria are turned out to be the key parameters which determine the multiple activation energy.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Investigation on multiple activation energy of retention in charge trapping memory using self-consistent simulation\",\"authors\":\"Sangyong Park, Seongwook Choi, Kwang Sun Jun, Huijung Kim, Sungman Rhee, Y. Park\",\"doi\":\"10.1109/ESSDERC.2014.6948755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Arrhenius behavior has been reported in a various temperature range for the retention time of CT Flash memories. In order to understand the physical origin of the multiple activation energy due to the non-Arrhenius behavior, we conduct a simulation study using a 3D self-consistent numerical simulator developed in-house. As a result, it is found that both vertical and lateral charge transport in the conduction band of nitride layer are responsible for the non-Arrhenius retention characteristic. Also, the tunneling current through the bottom oxide and a lifetime criteria are turned out to be the key parameters which determine the multiple activation energy.\",\"PeriodicalId\":262652,\"journal\":{\"name\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2014.6948755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation on multiple activation energy of retention in charge trapping memory using self-consistent simulation
Non-Arrhenius behavior has been reported in a various temperature range for the retention time of CT Flash memories. In order to understand the physical origin of the multiple activation energy due to the non-Arrhenius behavior, we conduct a simulation study using a 3D self-consistent numerical simulator developed in-house. As a result, it is found that both vertical and lateral charge transport in the conduction band of nitride layer are responsible for the non-Arrhenius retention characteristic. Also, the tunneling current through the bottom oxide and a lifetime criteria are turned out to be the key parameters which determine the multiple activation energy.