前馈神经网络容错的故障注入方法

Takehiro Ito, I. Takanami
{"title":"前馈神经网络容错的故障注入方法","authors":"Takehiro Ito, I. Takanami","doi":"10.1109/ATS.1997.643927","DOIUrl":null,"url":null,"abstract":"To make a neural network fault-tolerant, Tan et al. proposed a learning algorithm which injects intentionally the snapping of a wire one by one into a network (1992, 1992, 1993). This paper proposes a learning algorithm that injects intentionally stuck-at faults to neurons. Then by computer simulations, we investigate the recognition rate in terms of the number of snapping faults and reliabilities of lines and the learning cycle. The results show that our method is more efficient and useful than the method of Tan et al. Furthermore, we investigate the internal structure in terms of ditribution of correlations between input values of a output neuron for the respective learning methods and show that there is a significant difference of the distributions among the methods.","PeriodicalId":330767,"journal":{"name":"Proceedings Sixth Asian Test Symposium (ATS'97)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"On fault injection approaches for fault tolerance of feedforward neural networks\",\"authors\":\"Takehiro Ito, I. Takanami\",\"doi\":\"10.1109/ATS.1997.643927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To make a neural network fault-tolerant, Tan et al. proposed a learning algorithm which injects intentionally the snapping of a wire one by one into a network (1992, 1992, 1993). This paper proposes a learning algorithm that injects intentionally stuck-at faults to neurons. Then by computer simulations, we investigate the recognition rate in terms of the number of snapping faults and reliabilities of lines and the learning cycle. The results show that our method is more efficient and useful than the method of Tan et al. Furthermore, we investigate the internal structure in terms of ditribution of correlations between input values of a output neuron for the respective learning methods and show that there is a significant difference of the distributions among the methods.\",\"PeriodicalId\":330767,\"journal\":{\"name\":\"Proceedings Sixth Asian Test Symposium (ATS'97)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth Asian Test Symposium (ATS'97)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.1997.643927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth Asian Test Symposium (ATS'97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.1997.643927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

为了使神经网络具有容错性,Tan等人提出了一种学习算法,该算法有意地将一根一根的导线断裂注入到网络中(1992,1992,1993)。本文提出了一种向神经元注入故意卡滞故障的学习算法。在此基础上,通过计算机仿真,研究了线路故障数量、线路可靠性和学习周期对系统识别率的影响。结果表明,该方法比Tan等人的方法更有效。此外,我们根据各自学习方法的输出神经元输入值之间的相关性分布研究了内部结构,并表明方法之间的分布存在显着差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On fault injection approaches for fault tolerance of feedforward neural networks
To make a neural network fault-tolerant, Tan et al. proposed a learning algorithm which injects intentionally the snapping of a wire one by one into a network (1992, 1992, 1993). This paper proposes a learning algorithm that injects intentionally stuck-at faults to neurons. Then by computer simulations, we investigate the recognition rate in terms of the number of snapping faults and reliabilities of lines and the learning cycle. The results show that our method is more efficient and useful than the method of Tan et al. Furthermore, we investigate the internal structure in terms of ditribution of correlations between input values of a output neuron for the respective learning methods and show that there is a significant difference of the distributions among the methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信