{"title":"用元启发式优化的线性和非线性预测模型的评价:在厌氧消化过程中的应用","authors":"Tanja Beltramo, Bernd Hitzmann","doi":"10.1016/j.eaef.2019.06.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This research represents an evaluation study of the linear and non-linear mathematical methods applied to predict the biogas flow rate in </span>anaerobic digestion<span> processes. The anaerobic digestion model No.1 was used to generate the process data. For the prediction of the biogas flow rate the partially least squares regression, the locally weighted regression and the artificial neural networks were used. Two metaheuristic tools, here a genetic algorithm and an </span></span>ant colony optimization algorithm were applied to improve the prediction models. They carried out the variable selection procedure. The implemented mathematical models could successfully perform the prediction of the biogas flow rate. Nevertheless, more robust and accurate prediction of the biogas flow rate was done with the help of the artificial neural networks. Here the error of prediction was about 9% while the coefficient of determination reached 0.97.</p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"12 4","pages":"Pages 397-403"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eaef.2019.06.001","citationCount":"11","resultStr":"{\"title\":\"Evaluation of the linear and non-linear prediction models optimized with metaheuristics: Application to anaerobic digestion processes\",\"authors\":\"Tanja Beltramo, Bernd Hitzmann\",\"doi\":\"10.1016/j.eaef.2019.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>This research represents an evaluation study of the linear and non-linear mathematical methods applied to predict the biogas flow rate in </span>anaerobic digestion<span> processes. The anaerobic digestion model No.1 was used to generate the process data. For the prediction of the biogas flow rate the partially least squares regression, the locally weighted regression and the artificial neural networks were used. Two metaheuristic tools, here a genetic algorithm and an </span></span>ant colony optimization algorithm were applied to improve the prediction models. They carried out the variable selection procedure. The implemented mathematical models could successfully perform the prediction of the biogas flow rate. Nevertheless, more robust and accurate prediction of the biogas flow rate was done with the help of the artificial neural networks. Here the error of prediction was about 9% while the coefficient of determination reached 0.97.</p></div>\",\"PeriodicalId\":38965,\"journal\":{\"name\":\"Engineering in Agriculture, Environment and Food\",\"volume\":\"12 4\",\"pages\":\"Pages 397-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.eaef.2019.06.001\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Agriculture, Environment and Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1881836618301149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1881836618301149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Evaluation of the linear and non-linear prediction models optimized with metaheuristics: Application to anaerobic digestion processes
This research represents an evaluation study of the linear and non-linear mathematical methods applied to predict the biogas flow rate in anaerobic digestion processes. The anaerobic digestion model No.1 was used to generate the process data. For the prediction of the biogas flow rate the partially least squares regression, the locally weighted regression and the artificial neural networks were used. Two metaheuristic tools, here a genetic algorithm and an ant colony optimization algorithm were applied to improve the prediction models. They carried out the variable selection procedure. The implemented mathematical models could successfully perform the prediction of the biogas flow rate. Nevertheless, more robust and accurate prediction of the biogas flow rate was done with the help of the artificial neural networks. Here the error of prediction was about 9% while the coefficient of determination reached 0.97.
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.