扫描iiq测量法用于非常大面积太阳能电池的精确电流测定

B. Fischer, M. Keil, P. Fath, E. Bucher
{"title":"扫描iiq测量法用于非常大面积太阳能电池的精确电流测定","authors":"B. Fischer, M. Keil, P. Fath, E. Bucher","doi":"10.1109/PVSC.2002.1190557","DOIUrl":null,"url":null,"abstract":"We developed a setup to measure the quantum efficiency and integral reflectance for large area solar cells where the cell is scanned underneath a 2/spl times/2 cm/sup 2/ illuminated area defined by a mask. Measurements with 90 wavelengths between 300 and 1200 nm on 12.5 /spl times/ 12.5 cm/sup 2/ solar cells are obtained in less than 15 minutes with very low noise due to the good signal-to-bias ratio. A self-consistent scaling procedure based on the analysis of the internal quantum efficiency is used to account for scaling errors due to the electrical measurement and stray light. This analysis also provides data which enable the calculation of the current loss in the emitter of the solar cell. A method is introduced to identify the bias light level at which the small signal quantum efficiency coincides with the integral large signal response eliminating the need to take the complete quantum efficiency for many bias levels.","PeriodicalId":177538,"journal":{"name":"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Scanning IQE-measurement for accurate current determination on very large area solar cells\",\"authors\":\"B. Fischer, M. Keil, P. Fath, E. Bucher\",\"doi\":\"10.1109/PVSC.2002.1190557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a setup to measure the quantum efficiency and integral reflectance for large area solar cells where the cell is scanned underneath a 2/spl times/2 cm/sup 2/ illuminated area defined by a mask. Measurements with 90 wavelengths between 300 and 1200 nm on 12.5 /spl times/ 12.5 cm/sup 2/ solar cells are obtained in less than 15 minutes with very low noise due to the good signal-to-bias ratio. A self-consistent scaling procedure based on the analysis of the internal quantum efficiency is used to account for scaling errors due to the electrical measurement and stray light. This analysis also provides data which enable the calculation of the current loss in the emitter of the solar cell. A method is introduced to identify the bias light level at which the small signal quantum efficiency coincides with the integral large signal response eliminating the need to take the complete quantum efficiency for many bias levels.\",\"PeriodicalId\":177538,\"journal\":{\"name\":\"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2002.1190557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2002.1190557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们开发了一种装置来测量大面积太阳能电池的量子效率和积分反射率,其中电池在由掩膜定义的2/spl倍/2 cm/sup /照射区域下扫描。在12.5 /spl倍/ 12.5 cm/sup /太阳能电池上测量300至1200 nm之间的90波长,由于良好的信偏比,在不到15分钟的时间内获得了非常低的噪声。采用基于内部量子效率分析的自洽标度方法来解释由于电测量和杂散光引起的标度误差。该分析还提供了能够计算太阳能电池发射极电流损耗的数据。介绍了一种识别小信号量子效率与积分大信号响应重合的偏置光电平的方法,消除了对多个偏置电平取完整量子效率的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scanning IQE-measurement for accurate current determination on very large area solar cells
We developed a setup to measure the quantum efficiency and integral reflectance for large area solar cells where the cell is scanned underneath a 2/spl times/2 cm/sup 2/ illuminated area defined by a mask. Measurements with 90 wavelengths between 300 and 1200 nm on 12.5 /spl times/ 12.5 cm/sup 2/ solar cells are obtained in less than 15 minutes with very low noise due to the good signal-to-bias ratio. A self-consistent scaling procedure based on the analysis of the internal quantum efficiency is used to account for scaling errors due to the electrical measurement and stray light. This analysis also provides data which enable the calculation of the current loss in the emitter of the solar cell. A method is introduced to identify the bias light level at which the small signal quantum efficiency coincides with the integral large signal response eliminating the need to take the complete quantum efficiency for many bias levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信